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where T, and r, are the period and orbit radius respectively, for the second

planet.
From last two results we obtain

2 3
) -
- ’
o T
which is Kepler ‘s third law.

4. WORK AND ENERGY

The present chapter is devoted to the very important concept of energy and the
closely related concept of work. These two quantities are scalars and so have no
direction. Energy derives its importance from two sources. First, it is a conserved
quantity and second, energy is a concept that is useful not only in the study of
motion but in ell areas of physics and in other sciences as well.

4~-1l Work done by a Constant Force

Definition: the work done on a particle by a constant force (constant in
both magnitude and direction) is defined as the product of
the magnitude of the disgplacement times the component of the
force parallel to the displacement.

So,
g W = Fxcos ¢, 4-1)
9 Fcos® where F is the constant force, x is the net
X 5 : displacement of the particle and ¢ is the angle
' K between the directions of the force and the net

displacement. Let us note the factor F cos ¢ is
Figure 4 -1 the component of the force parallel to the
displacement (see Fig. 4-1).
Simple case occurs when the motion and the force are in the seme direction,
s0 that cos Yy =1 and W = Fd.

The unit of work is the joule WJ): J = N m.

Example : A box of mass m 1is pulled on distance x along a horizontal
floor by a constant force Fp which acts at angle y . The floor is rough and
exerts a friction force Ff.

Determine the work done by each force acting on the box, and the net work done
on the box.

Solution: There are four forces acting on the box as shown in Fig. 4-2; the pulled
force F,, the friction force F,, the weight of box mg and the normel force Fy
exerted upward by the floor.
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Fo The work done by the gravitational and

F ? w & 1 normal forces is zero since they are
R -Nn i 5 perpendicular to the displacement:
W = 0
lmg g
W, = 0
Figure 4 -2 N .

The work done by Fp is

wp = pr cos .
The work done by friction force is

Wf = fo cos T,

so the force of friction does negative work on.the box.
The net work done onanobject we determine as the sum of the work done by each
force:

W= wg+wN+wp+wf N (chos<f+chos7t)x.

4-2 Work done by a Nonconstant Force

In many cases a force varies its magnitude or direction. We now calculate the
work done by a nonconstant force.

e Let us assume a particle moving from point
4 to point B along the path as figure 4-3
shows. The path can be divided into infinit-
Par esimel intervals. During each such interval the
A force is assumed to be approximately constant.
If T 1is the position vector of any infinit-
esimal interval, this interval can be described
X by the infinitesimal displacement vector ar.
Figure 4-3 The direction of the vector dr is along the
tangent to the curve at that point which has

My
o]

)

pd -
the position vector T . o, ¥ is the angle between F and dr .

If we denote d/ = |dT las the magnitude of the infinitesimal displacement
-
vector dr , the work done by the force F elong the infinitesimal interval of the
path is with respect to Eqg. 4-1 equal

dw = F df cos y .

4 net work done along the path from point 4 to B equals
3 B
W= chos«de = f%’d?, 4-2)
A A

where we use scalar product notation.

Note that the factor F cos y represents the component of the force f parallel
to the curve tangent et any point. So, only the component of F parallel to the
velocity vector, F cos ¢, contributes to work. A force or component of a force
acting perpendicular to the velocity vector does no work. Such a force changees only
the direction of the velocity, it does not affect the magnitude of the velocity.
Example of this is uniform circular motion with constant speed. Centripetal force

does no work on the object.

- 35 -



Eq. 4-2 is the most general definition of work. Note that work is a scalar
quantity. To calculate the integral in Eq. 4~2 we must be able to express & non-
constant force F as a function of position.

4-3 Power

Power is defined as the rate at which work is done. The average power P s
when an amount of work W 1is done in time t is

P = A -
P = T (4-3)
The instantaneous power P 1is
p = 2% | (4-4)
at

where AW is elementary work done in element time dt. In SI units power is
measured in joules per second called watt (W) = J/s.

s
It is often convenient to write the power in terms of the net force F applied
to an object and its velocity Vv . Since P = aW/dt and dw = F.d7 , then

p = ¥ _ Fd . F 7, (4-5)
at Cat

4-4 Kinetic Energy

Energy is one of the moset importent concepts in science. There are
various types of energy. In this section we define kinetic energy of the translat-
ional motion. ’

Suppose the net force F on an object varies in both magnitude and direction,
and the path of the object is a curve as in Fig. 4-3. The force may be considered
to be a function of £ , the distance along the curve. The work done by this force
is (Eq. 4~2):

W= [Foosgat. \4-6)

=y
Since F cos ¢ represents the component of the force F parallel to the curve tangent
at any point, by the second law of motion we may write

Fcosy = ma, , (4-7)

where a, is the component of acceleration a parallel to the curve tangent at
any point (so, tengential acceleration), which is equal to the rate of change of
speed, dv/dt. We can assume v as a function of £, and using the chain rule for
derivatives:

v _ av ¢ _ ,dv

dat at dat alt
since df/4t is the speed v .

Now the equation (4-7) may be rewritten in form

Fcos ¢ = m v . nv oy 5
dt at
and after substituting into Eq. 4-3 we have:
v2
W o= fmvdv = %mvg-%mvi = AKE , (4-8)
V1
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where Yl, Y2 ?re initiel and final speed, respectively, and AKE represents the
change in kinetic energy whose instantaneous magnitude is KE = % mva. The equation
(4-8) states:

The net work done on an object is equal to its change in
kinetic energy.

This is known as the work-energy theorem. It tell us that if positive work W is
done on a body, its kinetic energy increases by amount W or if negative work W
is done on the body, its kinetic energy decreases by amount W . And if work done on
the body is zero, its kinetic energy remaing constant.

Energy is measured in the same units as work: joule (J), Like work, kinetic
energy is & scalar quantity. ’

4-5 Conecservative and Nonconegervative Forces

It is useful to divide forces into two types:

conservative and nonconservative. Any force is called a conservat-
ive force if the force depends only on position and if work done

by the force on a particle moving between any two positions depends
only on the initial and finsl positions and so is independent of
the path gone.

For example, we may prove that the force of gravity is a conservative force.
We know that during the falling of mass m the work done by the gravitational
force 1is wg = mgh, where h is the vertical height through which an object falls.

We now suppose &an object moves along
yA some arbitrary path in the xy plane, as
' shown in Fig. 4-4. By Eq. 4-2 we calculate
the work done by gravity:

B B
- -
Wg = f Fg al¢ = f mg cos « 4L .
A A (4-9)

As ¢= 1800_- o, the angle ¢ between vector
—

X d¢ and its vertical component dy holds
Figure 4-4 cos = - cos oland we see dy = @2 cos y =
= - df cos ol. )
Now we have
¥2 ‘
wg = - j. mg dy = - mgly, - yl) . (4-10)
Y1

We see that the work done depends only on the vertical height h =y, - ¥; and does
not depend on the path gone. So, we may say that gravity ie & conservative force.
Note that in our case in Fig. 4-4 ¥y, 2>¥; and therefore the work done by gravity
is negative. If y2'<'y1, the object is falling and the work done by gravity would
be poeitive.

There is also the other equivalent definition of a conservative

force: a force is a conservative one if the work done by the

E;;;; is zero whenever a particle moves along any closed path

that returns it to ite original poeition.
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But not all forces ere conservative. For example, the force of friction is a
nonconservative force, since the work done by friction is equal to the product of
the friction force and distance traveled. So, the work done by this force depends
on the path length.

4-6 Potential Energy

In thie section we introduce potential energy (PE) which is associasted with
the position of a body and which can be defined only in relation to a conservsative
force and which is (like KE) closely related to the concept of work.

Such example of potential energy is gravitational potential energy. We define
the change in gravitetional potential energy U when an object moves from a height
¥y 1o a height y2 relative to any horizontsl surface as

BU = Uy, -U; = mely, - yp) - (4-11)
This equation defines the change in potential energy between two points.

In section 4-5 we saw: if an object follows path as in Fig. 4-4, work done by
gravity is (see Eq. 4-10)

Wg = - mg(y2 - yl) . (4-12)

By compering Eqs. 4-12, 4-11 and 4-9, we see that the change in gravitational
potential energy is equal to the negative of the work done by gravity when the
object moves from the point A of height ¥1 to the point B of height ¥y ¢

AU = -vU_ = -ji’gd?. (4-13)

Besides gravitational there are other types of potential energy.

In genera]l we define the chenge in potentisl energy associated
riil = :
with a conservative force F as the negative of the work done

by that force:

B
5 = UA = -J Fat = - Ww. (4-14)
A

This definition makes sense only for conservative forces such as gravity, it does

AU = U

not apply to nonconservative forces like friction.

When we know the potential energy U as a function of coordinates X, ¥, 2
we may write the relation between the force F and the potential energy
Ulx, y, z) :

F(x, y, z) = </ 4y 3 20,y 2U) . _ grad Ulx, y, 2) .
y 2z (4-15)

So, the components of F are
F_=-24 Fo=-28 Fo= =28 (4-16)
X dx y dy 2 dz

4-7 Mechanical Energy and its Conservation

Let us consider a conservative system in which energy is trensformed from
kinetic to potential or vice versa. According to the work-energy theorem (Eq, 4-8)
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the net work W done on a particle is equel to the chenge in KE of the
particle:
W = AKE.
Since we assume a conservative system, the net work done can be written in terms of
the changing potential energy (iq. 4-14):
Au = ~w.
So, we can write
AkE + Dy =0 . (4-17)
We see, that if the kinetic energy of the system increases, the potential
energy decreases by an equal amount ané vice versa,
We now define a quantity E, called total mechanical energy of system, &s the
sum of the kinetic and potential energy:

E = KE+U,

and from Eq. 4-17 we have for conservative forces only
E = KE+U = constant, (4-18)
that is, the total mechanical energy of a conservative system remains constant, or

we say that the total mechanicel energy is conserved. This is ¢alieq the principle
of conservation of mechanical energy for conservative forces.

For example, if vy and Ul represent the velocity and potential energy at
one instant, end Vs, U2 at a second instant, we can rewrite Eq. 4-18 in form

& mv2 + U = 4 mv

2
5 mv] 1 5 + U, . (4-19)

2 2

Example : The simple pendulum of mess m is released at t = O when the
cord mekes an engle ¥ = ¢, to the vertical (cee Fig. 4-5; the length of a mass-

less cord is L).

a) Determine the speed as a function of position and at the lowest point.
b) Determine the tension in the cord.
tIgnore friction and air resistance.)

Solution:a)Two forces areacting on the bob at any moment: gravity mg and the force
Fc the cord exerts on the bob. The latter always acts perpendicular to the
motion, so it does no work. The totsl

LA mechanical energy of the system is
E = % mv2 + mgy ,

where y is the vertical height of the
bob st any moment. If we take y = 0 at
the lowest point, hence at t =0

y =¥, L-Lcos ¢ =L -cos¢),

and at t =0

eince v=0 at t = 0.

At any other moment

: ) i 2 -
Figure 4 -5 ‘.J:%mv + mey = mgy, -
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From this equation

v = V2s\y°-y) .

v = Vg;chos ¢ - cos £,) .
At the lowest point, y = 0, y=0

v = VZgyo or v = VZgL(l - cos ) .

b) The tension in the cord is the force F that the cord exerts on the
bob.There is no work done by this force since thls force is perpendicular to the
motion.

Radial acceleration of the bob is v /L the net force in the radiasl direc-
tion is equal Fc minus component of gravity mg cos ¢ that acts outward.Hence

y = -
m = = Fc mg cos Y .

or

ve
Thus Fc = m(;E— + g cos $> .

We use the result for v2 :

B, = m[%g\cos y - cos ¥b) + g cosﬂ mg\3 cos y — 2 cos ?o).

4-8 Grevitational Potent ijal Energy and
Escape Velocity

So far we assumed the force of gravity F = mg is constant. But this assumption

is accurate for objects near the surface of the earth.

Generally, the gravitational force exerted by the earth on a partlcle of mass
m decreases inversely as the square of the distance r from the earth s center.
This relationship is given by Newton’s law of universal gravitation (as we sew in
Chapter 3): N =

F = -G--‘l‘%-ro
r .

where M is the mass of the earth, ;b is & unit vector directed radially from the
earth’s center. The minus sign imdicates that the force on m is directed toward
the earth’s center, in the direction opposite to r°

We now suppose an object of mass m moves from one position (point 1) to
another (point 2) along an arbitrary path so that its distance from the earth’s
center changes from r to r, {cee Fig. 4-6).

The work done by the gravitational force is

> -
=de£=—Gme?—%-£—, (4-20)
5
where dl represents an 1nf1n1te51mal dleplacement.

—

Since r° d¢ = dr is increment of d! along r° (see Fig.
4-6), then

r2
W=-GmMj d—%:m(-l—-L>.
r r T
I‘l 2 1

Since the work of the gravitational force depends only on
Figure 4-6 the position of the end points of path and not on the path,
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the gravitational force must be a conservative force, and we can determine the
potential energy for the gravitational force. The change in potential energy is
definea as the negative of the work done by the force (see section 4-6). So we have

AU = Uy-U =-w = -9, Gl (4-21)
2 N
So, the potential energy at any distance r from the earth’s center can be ex-
pressed

Ur) = -%+c,

where C 1is a constant. Usually we choose C = 0, so that

Uir) = -%. (4-22)

with this choice for C we have U = 0 at r = <. We see that potential energy any
object is always negative. The total energy of a particle of mass m conserved, -
since gravity is a conservative force. So,

% mvi - G %% = % mvg -G %M = conetant.

When a body is projected from the earth, it will return to earth unless its
speed is very high, But if the speed is high enough, it will continue out into
space never to return to earth. The minimum initial speed needed to prevent an
object from returning to the earth is called the escape velocity. To calculate the
value of the escape velocity, we must substitute ry = R = 6,3.10° m the racius of
the earth, T, T 09, V, T 0; we obtain

\[ 26
ve, = |2 - 1,12.10% w/s,

or 11,2 km/s.

4-9 Central Force

A central force ie defined ac any force whose magnitude depends only on the
distance r from some single point, called the origin or the center, and whose
direction is either toward or away from this origin.

Such a force can be express as

F = Fir) r° . (4-23)
The work Gone by the central force is
r
2 2 2
- P
W o= JF as = JFkr) r’dl = J' F(r) dr , \4-24)
1 1 r;
A

since r° a¢ = er.

We see that the work depends only on the end points
ry, Ty of the path. So, any central force is a concer-
vative force. The change of the potential energy of a

central force is
r

?* o 2
AU:UZ-U1=-w=-de£=— Fir) &r ,
1 ry (4-25)
Figure 4-7 and we see that it is function only of r : U = Ulr).
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4-~10 Stable and Unstable Equilibrium

Let us assume the motion is in one dimension x and we are given the potential
energy of a particle of mess m as a function of position U(x).

The total mechanical energy E must be constant:

%mv2+U(x) = E = constant,

v = & =\/g [ - ux)]. (4-26)
dat m

For example, let a graph of U(x) versus x be as follows:

so0 that

)
U(x)

\ e
1 B2 =\
N\ S
. Eg : \fE. : :

o " L ! L >
X5 X4 X3 X0 X1 X2 XG X

Figure 4-8

The total energy E is constent and thus can be represented as a horizontsal
line on this graph. What the actual value of E will be for a given system depends
on the initial conditions. For example, the total energy E of a particle oscillsat-
ing on the end of a spring depends on the amount the espring is initielly compres-
sed or stretched.On the Fig. 4-8 we have such four total energy lines of some
system.

From Eq. 4-26 it is clear that U(x) must be less or equal E :
Uxj £ E.

So, the minimum value which the total energy cen have for the PE sghown in Fig. 4-8
is that labeled Eo' For this value of E, the particle hac only potential energy but
no kinetic energy and thus for this value of E the particle can only be at rest at
position x = b

If the total energy E 1is greater than Eé, say it is El on our plot, the
particle can have both kinetic and potential energy and

KE = E - U(x) .
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Our curve represents U(x) at each x. S0, the kinetic energy for any x is
represented by the distance between the E and the magnitude of U(x). In our graph
the KE of a particle at Xy when its total energy is El is indicated by "KE". It
is clear that a particle with total energy E) can oscillate only between the points
x, and X3, since for x> X, Or x <:x3 the potential energy would be greater
than El' At X, &and ) the total energy E1 equals the potentiasl energy, thus the
kinetic energy is zero and the velocity of a particle is alsc zero. These points
are called the turning points of the motion.

If the particle has energy E = E2, there are four:turning points. The particle
can now move in only one of the two potential "valleys", depending on where it ie
initially. It cannot get from one velley to the other - for example at Xy
Uix) > E2. For energy E = E3, there is only one turning point at x = X5 since
Uix) <E3 for all x > Xg-

We know the force F is related to the potential energy U by
du

dx
that is, the force is equal to the negative of the slope of the U - versus - x

F = -

curve at any point.

At x = A the slope is zero, so F = 0. At such a point the particle is said
to be in equilibrium, since the net force on the particle is zero. So, its ac-
celeration is zero. When the particle displaced slightly from x = X, it returns
back iis equilibrium point and the particle is sald to be in stable equilibrium.
Any minimum in the potential energy curve represents a point of stable equilibrium.

4t point x = x, it is also F = -~ dU/dx = O a particle would also be in equi-
librium. But the particle will not return to equilibrium if displaced slightly, it
moves away from the equilibrium point. Points like Xy where the potentiel energy
curve has a maximum, are points of unstable equilibrium.

When a particle is in region of constant potential energy, such as x = Xg in
Fig. 4-8, the force is zero for any x of this region. The particle is said to be
in neutral equilibrium,

5. MANY BODIEE MECHANICS

Up to now we have been mainly concerned with the motion of & single particle.
When we have dealt with an object, that is, a body that has size, we have assumec
that it underwent only translationsl motion, we have assumed that our body approxi-
mated an ideal particle. Real bodies, however, can undergo rotational motion as well.
A basic idea for study of such bodies ies that of center of mass. Later in this
chapter we discuss linear momentum ané its conservation.

5-1 Center of Mass

General motion of a real body (or system of bodies) can be considered as the
sum of the translational motion of its center of mass (cm) plus rotationsl motion

about its center of mass.
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