otential
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Our curve represents U(x) at each x. o, the kinetic energy for any x is
represented by the distance between the I and the magnitude of U(x). In our graph
the KE of a particle at Xy when its total energy is El is indicated by "KE". It
is clear that a particle with total energy E, can oscillate only between the points
x5 and X3, since for x> X, or x <:x3 the potential energy would be greater
than El’ At X5 and ) the total energy El equals the potential energy, thus the
kinetic energy is zero and the velocity of a particle is also zero. These points
sre called the turning points of the motion.

If the particle has energy E = E,, there are fourlturning points. The particle
can now movVe in only one of the two potentisl "valleys", depending on where it is
initially. It cannot get from one valley to the other - for example at
uix) > EZ' For energy L = E3, there is only one turning point at x = X
Ulx) <jE3 for all x > Xge

We know the force F is related to the potential energy U by

X
4
since

F:_.ﬂ’
dx
that is, the force is equal to the negative of the slope of the U - versus - x

curve at any point.

At x = X, the slope is zero, so F = 0. At such a point the particle is said
to be in equilibrium, since the net force on the particle is zero. So, its ac-
celeration is zero. When the particle displaced slightly from x = X5 it returns
back its equilibrium point and the particle is said to be in stable equilibrium.
Any minimum in the potential energy curve represents a point of stable equilibrium.

At point x = x, it is also F = - dU/dx = O a particle would also be in equi-
librium. But the particle will not return to equilibrium if displeced slightly, it
moves away from the equilibrium point. Points like Xy where the potential energy
curve has a maximum, are points of unstable equilibrium.

When a particle is in region of constant potential energy, such as x = Xg in
Fig. 4-8, the force is zero for any x of this region. The particle is said to be
in neutral equilibrium.

5. MANY BODIILZESE MECHANICS

Up to now we have been mainly concerned with the motion of a single particle.
When we have dealt with an object, that is, a body that has size, we have assumec
that it underwent only trenslational motion, we have assumed that our body approxi-
mated an idesl particle. Reel bodies, however, can undergo rotational motion as well.
A basic icea for study of such bodies is that of center of mass. Later in this
chapter we discuss linear momentum and its conservation.

5~1 Center o f Mass

General motion of a real body (or system of bodies) can be considered as the
sum of the translational motion of its center of mass (cm) plus rotationsl motion

about its center of mass.
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We can consider &sny body as being made up of

S il > X many tiny particles. But let us first consider a
0 Xy Xem X, system made up of only two particles of mass my
and m,. Let both particle lie on the x axis at

Figure & - 1 positions x; and x, (Fig. 5-1).

The center of mess of this system is defined to
be at the position Xop» &iven by

N - mlxl + m2x2 . mlxl + m2x2
b

cm
m]_+m2 M

where M = ml‘ +m, is the total mass of the system. The center of mass lies on the
line joining m; and m, and is cloeer to the large mass.

It is clear, if the two masses are equal, x . is midway between them.
For system consisting of n particles of masses my, My, «vep My at positions
Xys Xp; eeey X, OR the x axis we define center of masss as follows

mlxl + m2x2 t eee t mnxn 1 n
X = = _Zmixi,

cm
+ + ses + =
oy m, m M i

(=]

‘ n
where M = 2 m; is the total mass of the system.
i=1
If the particles. are spread out in space, we define the coordinates of the

center of mass as

n n n
=1y =1 ! %
*om T M {3 "i%i Yem = & {73 "1 zcm‘MiZ:l mizg , (571

n
where Xx;, y;, 2; &re the coordinates of the particle of mass m; and M = b3 m;
is the total mass. =1

Eq. 5-1 can be written in vector form. If Fi = X3 T+ ¥y 3 + zii is the
o . : > i 7
posnlgn v?ctor of the 171'.1'1 particle of the mass of m,, and Tom = Xem * Yom d +
+ Zon k will be the position vector of the center of mass, then
>
— 1 —>
r = == m: s 5=2)
cm M i=] 1 kR

A real body is assumed being made up of a continues distribution of matter. In this
case we take the infinitesimal element of mass dm at point x, y, z (see Fig. 5-2)
and the sums in Eqs. 5-1 and 5-2 become

Y integrals:
. T 1 .
xcm—ﬁfxdm, ycm—Mf.vdm,
(5-3)
dm =1
x.2y) Zom = W Jz dm
or
- 1 (=

? By = ﬁfr dm , (5-4)
> where M = fdm is total mass of the

X object.

For symmetrical uniform body the

center of mess must lie on a line of sym-

Figure 5-2 metry.
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» of Example 1 : Three particles, each of mass m are located at the corners
- 8 of & right triengle whose sides are 41, snd /.
n
‘ ét Determine the center of mass.
Solution:
nec to Y
y=I2¢ mg
l2 >
2 T
n the 3 7/ e
m ; M -
1 W
0 |1 X=|1 X
. 3
itions
Figure 5- 3
my has coordinates X% =Yy, = 0, o, hag coordinates X, = 11, ¥y = 0, -anéd
m, has coordinates Xy = 0, o = ,22; Dy =my =Wy =m, SO M = 3 m. Then,
1 1 4
x = === (DyXq + DyX, + MeaX,) = —=—mf, = —=
cm 3 171 272 373 Im 1 3
: L
1 1 2
y = = (my, +m + Mays) = ——~—ml, = —=
cm 3@ 11T EYe T Yy 3o 2 3
Exemple 2 : Determine the center of mass of a uniform cone of height h
m, and radius R .
Solution: We choose the coordinate system so that the origin is at the tip of the
. cone and the 2z axis is along the line of symmetry tas in Fig. 5-3).
j+ ~ Then x = Yem = 0, eince the center of mass
z must lie on the line of symmetry.
To find Z., Wwe divide the cone into an
. infinite number of cylinders of thickness dz
. R o and of the mass dm = ¢ dV = fﬂfrz dz, where
S @ is the density (mass per unit volume).
2) r /. Volume of such infinitesimal cylinder
4% is av = Tr° 4.
z By Eq. 5-3 we write
> =1 =1 2
0 y zcm—Mszm-M zg:JEr dz .
o
% The radius of each infinitesimal
Figure 5 -4 cylinder can be expressed from the
ratio r/z = R/h, so r = Rz/h.
Then we have

1 b R2 ng2 [ 3 T R°n®
2 ]‘[ dz = —t—_ Jz dz = -L_____ .
cm f 2 Mh2 4M
o
The total mass M of the cane is equal to the density ¢ times the total volume of the
cone V = T[R h/3, that is, M 9'IER h/3. Thus we have
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So, the center of mass of the cone is % h from the tip of the cone, or % h from
its base.

5-2 Center of Mass and Trenslational Motion

We examine the motion of a system of n particles of total mess M. From Eg.

5-2 we have
M F = :Z: m; P .

cm 1.1 +°i

We differentiate this equation with respect to time:

- n -
Mdrcm= Zm.dri
at i=l *  at
or
>
— -
Mv = m, V. 5-5)
cm j=;p 1+ 17
where ;; is the velocity of the i-th particle of mass m; and V;m is the velo-~
city of the cm.
We take the derivative with respect to time again:
§L
- -
Xa, = {;i m; &; , (5-6)

where 2} is the acceleration of the i-th particle and Zém is the acceleration of
the cm.

By the second law of motion we may write m; 3& = f; , where ;i is the net
force on the i-th particle.

Eq. 5-7 can be now rewritten into form

n
- e 4 - — —
Ma, = F] +F, + ... +F = Zgi F; . (5=7)

This equation says that the vector sum of all the forces acting on the system is
equal to the total mass of the gystem times the acceleration of its center of mass.
\Here, the system may be a system of n particles or a resal body.)

By Eq. 5-6 we may conclude that

the center of mass of a system of particles (or of real body
of total mass M) moves like a single particle of mass M

which is acted on by the seme net force.

5-3 Linear Momentum

Linear momentum Ef of a particle is defined as the product of its mass m and

its vector velocity v o:

P = nv. - (5-8)
It is clear that linear momentum is a vector. Its direction is the direction of the
velccity vector V and its magnitude is p = mv.

The unit of lineer momentum in SI units is kg m/s or N s.
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If we essume the mase m 1ie constant, we can write the second law of motion
as follows

P s one = o -4 LYy =
F =ma = ng = g7 (o v) = St o
and thus -
—)_Gp
= 3t (5-9)

. => » s 3 . - -
Eq. 5-9 1s more general than F = m & because it includes situation in which the
mass may change.

Eq. 5-9 applies to a single particle. Let us now consider a system of n
particles of total mass M = ml o, Foee. * mn' Let us assume the particles have
—u. — — s d

linear momentum pl =m v l’ p2 S D, Vo ey pn = m, vn, where Vi Vo5 ooy Vp
are the velocities of the particles.

The total linear momentum P of our syctem is

n n
o - —_ - -
P = m vy +my Vy *eee +@m V) = ;;: my vy = ;Z: S& . (5-10)
i=1 i-1
Comparing Eq. 5-10 with Eq. 5-6 leads to
P = MV_ . (5-11)

cm
So, we may say:
the total linear momentum of a system of particles is equal
to the product of the total mass M and the velocity of the
center of mass of the system. Or, the linear momentum of &
body is the product of the body s mase and the velocity of
its center of mass.

If we differentiaste Eq. 5-11 with respect to time, we obtain (acsuming the
total mass M is constant)

=¥ -3
ar dv .
_Ez_ = M d:m = Ma, 5-12)
and by Eq. (5-7) we have =
dpP . =
L = F, \5-13)
dt

—
where F 1is the net external force acting on the system. Eq. 5-12 or 5-13 is the

second law of motion for a system of particles.

If the net external force on a system of particles is zero, then from Eq.

5-13 we have =
& ., > )
= 0, or P = constant. (5-14)

dat
And we may say: ’

When the net external force on & systemw is zero, the total

linear momentum remaings constant.

This is the law of conservation of linear momentum. 4 system on which no externsl
force acts is called isolated system. So, the law of conservation of linesr

momentum can also be stated as,
the total linear momentum of an isolated system of bodies

remains constant.
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5-4 Collisions and I mpulse

Collisions are met in everyday life: a tennis racket striking a tennis ball,
two billiard balls colliding, car striking another, a hammer hitting a nail. At
the atomic level we study collisions between atoms.

By a collision we mean the interaction between two bodies that occurs over a
short time interval and is so strong that other forces acting (such as force of

F

0 t, Ba

gravity or air resistance) are insignificant
compared to the forces each body exerts on the
other during the collision. We shall aseume the
masses of particles remain constant and none of
the speeds is close to the speed of light, so we
ignore relativistic effects. A graph of the
magnitude of the force one object exerts on the
other during a colliéion, as a function of time,
is like that shown in Fig. 5-5. The time inter-
val At = t, - t; is usuelly very emell (t; is

time when the force starts acting, t, is time
when the force stops acting). The force as shown

in this figure is called the impulsive force.
We write the second law of motion:

Figure 5-5

= —_—
—dL = F
dat

the rate of change of linear momentum of an object is equal to the net force on an
object.

During the infinitesimal time interval dt, the linear momentum changes by

dp = Fat.
By integration over the duration of a collision

—

. Py | Yo,
Pp-B = [& = [Fa, (5-15)
Py

Y

where Bi and EE are the momenta of the object before and after the collision.

The integral of the force over the time interval during which it acts is cal-
-
led the impulse J :

(5-16)

From Eq. 5-15 we conclude that the change in linear momentum of an object ZXE' =]
= EE - 51 is equal to the impulse acting on it:
t2
— — = -~
A—g:pz-pl= Jth=J. (5-17)
Y

The unit for impulse is the same as for linear momentum, kg m/s or N ¢ in SI.
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5-5 Conservation of Momentum and Energy in
Collision

Let us now consider two bodies of mass my and m, that have momenta 31 and

32 before they collide and ;1 and 32 after they collide (as in Fig. 5-6).

During the collision we
suppose the force exerted by

= —
F P, body m; on body m, is F .
/ By the third law of motion,the
P S P force exerted bz. body m, on
> < ELh body m, is - F. During the
1 ! very short collision time, the
A impulsive force F 1is assumed
F to be much greater than any
5:' other external forces acting,
and so F represents the net
befors at after force to a 5ery good approxima-
collision collision collision ,
i tion.
) o, the change in momentum
Figure 5 -6 : of body m, is (see Eq. 5-16)
t
— -, -
Ap, = Py =Py = 5 Fat
Y
and for body mq
ta
APy = B =P =- J?’ét-
Yy
By comparing we have
. . o —
Apl = -A P
or
-5, — -, —
Py =Py = - Py - Pp)
and thus ‘ ’ '
by +P. = pr o+ Pl (5-18)
Py * Py Py * Py

We have proved the totel linear momentum of our two objects before the collision is ‘
the same as the total linear momentum after the collision. Linear momentum is con-
servec. To apply the law of conservation of linear momentum we must be sure that the

impulsive forces are much greater than the other external forces.

By the law of conservation of energy the totel energy of objects will also be
conserved during s collision. Because energy can teke meny forms, this law has not
always to-teke the practicel use. There are, however, collisione in which the total
kinetic energy of the two objects is conserved. Such collisions are called elastic
collisions and for the collision of this type we can write

bapd s dagd = basi? e bund

where vy and v, are velocities of the objects before the collision, v]: ané v2'
are velocities after the collision.
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Eg. 5-19 tells us that the total KE before the collision is the same as the
total KE after the collision.

At the atomic level, the collisions of atoms or elementary particles may be
very often considered as an elastic collision. But in the macroscopis world an

elastic collision is an idesl case, because at least a 1ittlethermalor sound and
other form energy is always produced during a collision.

5-6 Elastic Collisions in One Dimension

We consider that two particles of mase m; and m, are moving with velocities
v and A along the x axis as in Fig. 5-7. When the velocity any perticle is
positive, it is moving the right (increasing x), when the velocity any particle is
negative, it is moving the left (decreasing x). After the collision their velo-~

’
.

cities are vi and v,

my . Vi My Vo
> i
_ (Vg > V)
X
my v my & , .
— > —_— (Vi < Vy)
X
Figure 5-7

By the law of congervation of linear momentum we have
mVy + MoV, = mpV) ot BV . (5-20)
If the collision is assumed to be elastic, total kinetic energy is also conserved:
buv? v Fupl = pav® e papg (5-21)
We have obtained two equationsfor two unknowns velocities vi and vé after the
collision. We can solve them if we are given the masses m,, m, and initiel velo-
cities Vs Vpe
First, we rearrange both the momentum equation and the KE equation into form:

my vy - vl) = mylv, = v2)
2 2y 2 _ .2
ml(v1 -V ) = m2(v2 v5)
or
my vy - vl) = mz(v2 - v2) \5-22a)
my vy = vl)(v1 + vl) = mz(v2 - v2)(v2 + v2) . (5-22b)

Dividing Eq. 5-22b by Eq. 5-22a \assuming v, # vy and v, # v, ) we receive

vptvy T vat v
or
vy - Yy v, -V o (5-23)

The result in Eq. 5-23 tells us that for any head-on collision the relative speed
of the two particles after the collision is the same as before, no matter what the

masses are.
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Now we examine some special cases. We assume Vis Vu, Iy and m, are known and

.

we want 1o getermine velocities vi and v, after the collision.

1. Equsl masses, m = m,

From momentum equation (5-21) we have
vy + v, = vi v, _ \5=-24)
If we add and subtract Lgs. 5-24 and 7-23:
vy, T vy,
Vi oS Voo
fhe particles exchange velocities as a result of the collision.
If particle m, is at rest before the collision, so that v, = 0, we have

vi = 0 and v, = v,

‘that is, particle my is stopped after the collision and particle m, starts to

move with a velocity equal to a velocity of particle m; before the collision.

2. my # Dy, Vo = 0; that is, the particle m, at rest initially:

Combining the momentum equation (5-22a) with Eq. 5-23 which now are

m vy = vl) = myv,
Vi T V2TV
we obtain
gy
v, = v ;
my + m, )
\5-25
vl = g LT T2
1 - 1 *
my + my

Let us examine some epecial cases of this result:

a) v, = 0 and my = m,: from Eqs. 5-25 we have

V2 T N1
We get the same cage and thus the same result as above.

and v, = Q.

b) vy = 0 and ml:i> m,: & very heavy moving object strikes a light object at rest.

From Lgs. 5-25 we receive the result:

The velocity of the heavy particle is practically unchanged, the light particle,
originelly at rest, takes twice the velocity of the heavy particle.

c) v, = 0 and ml<G<,m2: a moving light particle strikes a very heavy particle &t

rest.
From Egs. 5-25 we obtain the result:

vé ~ 0,
V1
The heavy particle remaine at reet anc the very light perticle rebounds with its

~
~

-'Vlo

same speed but in the opposite direction.
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