6. ROTATIONAL MOTI ON ABOUT AN AXIS

In this chapter we will deal with rotaetional motion of rigid bodies. By a
rigid body we mean a body that has a definite shape which doesn’t change. Of course
any real body is able of deforming when a force acts on it. But theee effects are
often small, so the concept of an ideal rigid body is a good approximation in many
cases. By rotational motion we mean that all points in the body move in circles and
that the centers of these circles lie on a line called the axis of rotation.

6-1 Kinemsatics of Rotational Motion

Every particle in a body rotating about a fixed axis moves in a circle whose
center is on the axis and the radius of this circle is R, where R represents the
perpendicular distance of the particle from the axis of rotation.

Perpendicular line drawn from the axis to any
particle sweeps out the same angle ¢ in the same time.
To indicate how far the body has rotated, we specify
the angle ¢ of some particular line in the body with
respect to some reference line, such as the x axis
(see Fig. 6-1). A particle of the body (such as P in
Fig. 6-1) travels the distance 4 of its circular path.

In general, any angle ¥ is given by

£
LA
Figure 6 - 1 where R is the radius of the circle and £ is the arc

. length subtended by the angle y, specified in radians.
In Chapter 1 we defined the angular velocity «w and angular acceleration €, a8

dy daw
W = —— and E = —,
dt dt

J and & ere now the same for all points in the body. Thus () and € are properties
of the body as a whole.

By Eqs. 1-26, 1-27 and 1-28 the angular velocity @ and engular acceleration &
of a body can be related to the linear velocity v and to the acceleration & of
any point in the body:

v = RwW,
= RE-y

°r - 5l

ap = WR,

whére R is the perpendicular distance of the point from the rotation axis, and ap
and ap &re the radial and tangential components of the linear acceleration. It is
cleer, v, ap and e 8re different for particles at different distances R from the

axis. :
The frequency of rotation f of the body, measured in revolutions per second,

is related to the angular velocity

W = 27T .

From Chapter 1 we have known the equations for the velocity and the path
traveled of the uniform linear acceleration motion. The seme equations can be
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derived for constant angular acceleration motion if we replaced x by ¢, v by w
and & by &£:

Linear Angular
v=v,tat w=l<)o+st
2
x = vt o+ % at Y = Wt +%- at2 \a, & constant)

6-2 Vector Nature of Angular Quantities

The linear quantities displacement, velocity, and acceleration are vectors. We
will see in this section that angular velocity and angular acceleration can elso be
treated as vectors, although angular displacement, ¥ is not a vector.

First let us see why the angular displacement cannot be a vector. One property
of & vector is that when two vectors are added, you get the sesme result no matter in
what order you adé them.That is, if the two vectors are called Vi and Vé, then

- > - -
Vl + V2 = V2 + Vl .
y y ‘ Y.
' N7
z « 5/:§;i;;;;;;§§i:/ z %
a)
y y
z z
ﬁ X X
b)
Figure 6 -2

Suppose, how, we rotate é book by ?1 = 90° around the x exis followed by & rota-
tion Y, = 90° around the y axis, as shown in Fig. 6-2a. If, instead, we first
rotate the book by Y, = 90° around the y eaxis followed by v, = 90° around the x
axis, Fig. 6-2b, we do not get the same result! In other words, Y, + Yé %

% Y, + Y. Hence Y cannot be a vector.

Sut now consider a rotation Y, = 15° about the x axis and ¥, = 15° about
the y axis. In this case, Y} + Y, is neerly (but not quite) equal to ', + ¢, as
gshown in Fig. 6-3. However, in the limit of infinitesimal angles of rotation, the
equality dy) + 4y, = &f, + d¢y) is exact. We get the same result when we add two
infinitesimel rotation angles in either order. Hence an infinitesimal angular dig-
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placement, dy , satisfies the commutative law and is a vector, although a finite

angular displacement is not.
Yy Y
150
_ 15 - b)
N * oz *
Figure 6-3

The_ggguler velocity, «w, must also be & vector since it is the product of a
vector (d ) and a scalar (l/dt):

—
- dy
W= —
N at
Similarly, since @ is a vector, the angular velocity
g2 . 4w
dt

is also a vector.
We choose the axis of rotation to be the direction of the angular velocity
-

vector @. An orientation of vector & is given by right-hand rule: when the fingers
of the right-hand are curled around the rotation axis and p01nt in the direction of
the rotation, then the thumb points in the orlentatlon of a) Note that no particle
of the rotating body moves in the direction of A

Iir the axis of rotation is fixed, then 4 cen change only in megnitude and thus
vector €= dc&/dt must also p01nt slong the axis of rotation. If the axis of rota—
tion changes direction, vector & changes direction too, and in this case vector £
will not point slong the axis of rotation.

6-3 Torgque

In preeent section we will discuss the causes of rotational motion. Firstly,we
define the lever arm R, &s the perpendiculer distance of the axis of rotation from
the line of action of the force {we mean the distance which is perpendicular to
both the axis of rotation and to en imaginary line drawn along the direction of the
force). See Fig. 6-4s.

The product of the force times the lever arm is called the moment of the force
about the axis or torque T. So, we can write the torque about & given axis as
T = R_LF 3 (6-1)

where R, is the lever arm (see Fig. 6-4a).
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line of action of F

The second equivelent way of de-

:i:);/ termining the torque of the force is to
R . \‘\\ F resolve the force into componente paral-
s of i ) point of lel and perpendicular to a line joining
axis o inati : .
. g application .
rotation \ gfpforce the point of application of the force to

b)

Figure 6 -4

axis of
rotation

my

Figure 6 -5

™

Figure 6-6

the axis as in Fig. 6-4b. In this case

the torque will be equal to F, times the
distance R from the axis to the point of applica-
tion of the force:

T = RF.L . \6"2)
Since F, = F siny and R; = R sin ¢ , we have
also for the torque
T = RF sin y. (6-3)

We can use any of Egs. 6-1, 6-2 and 6-3 to calcu~
late the torgue.
The unit of the torgque is N.m in SI units.

Notice that since we are interested only in
rotation about a fixed axis in all this chapter,
we consider only forces that act in a plene per-
pendicular to the axis of rotation.

If a force doesnt act in a plane like this,
we must take its component into a plane perpendi-
cular to the axis; this component can give rise
to rotation about the axis (cee Fig. 6-5).

We now express the torque as a vector. For a
-
particle of mass m on which a force F is applied,
the torque about a point O is

> - -
T = rxF, 16-4)

where P is the position vector of the particle
relative to point O \Fig., 6-6). If we have a
system of particles (which could be the particles
meking up a rigid body) the total torque T on the
system is the sum of the torques on the individual
particles: B . .

T =X r; x Fy,
where Fi isﬁthe position vector of the i-th
particle and Fi is the net force on the i-th
particle,

6-4 Torque a8and Rotational
Inertia

Firstly, let us consider a particle of mass

m rotating in a circle of radius R at the end of a rod whose mass we can ignore

\Fig. 6-7).
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The torque which gives rise to its angular acceleration
€ is T = RF. If we use the relation between the angular ac-
celeration and the tangential acceleration ag = RE , we can
write the second law of motion for our particle

F = may = mR &
ané the torque is now given by

T = mR2£. \6=5)

Eq. 6-5 represents a relation between the angular accelera-
tion and the applied torque T for a single particle. The
quantity mR® represents the rotational inertia of the particle

Figure 6-7

and is called its moment of inertia.

Now let us consider a rotating rigid body. We may assume it to be consisting of
meny particles located at various distances from the axis of rotation. For the
torque Ti of the i-th particle of the body we may write

- 2 g
T, = mRie , (6-6)

where m; and Ri are the mass and distance from the axis of rotation of the i-th
particle, respectively. & is angular acceleration which is the same for all the

particles of the body.

The sum of the verious torques is the total torque of the body

= & 2
T = X1 =&LnR] . (6-7)
+ 2 _ 2 2 2 .
The sum X m;R{ = mR] + myR3 + ... + myRy in
N\ L Eq. 6-7 represents the sum of the masses of each

particle in the body multipled by the squared
perpendicular distance of each particle from the

h M=M, axis of rotation. This quantity is called the
e L>I? rotational inertia or moment of inertia I of the
’ body :
- I =% mR% . (6-8)
.- it
gl The moment of inertia I has unit of kg.m2 in &I
¢ units.

From Eqs 6-7 and 6-8 we can write

.Rz Tr = I1E&. (6‘9)
L This equation is valid for the rotation of a
. i rigid body about a fixed exis.
! Figure 6 -8 We see that the moment of inertia I, which

is a measure of the rotational inertia of a body,
plays the same role for rotational motion that mass does for translational motion.
From Eq. 6-8 can be seen that the rotational inertia of an object depends not only
on its mass. but slso on how that mass is distributed. For example, & large-diameter
; cylinder will have greater rotational inertia than one of equal mass but smeller
diameter (and therefore longer) see Fig. 6-8. The former will be harder to start
rotating and harder to stop.
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Example 1: 415N force (represented by FT) ig applied to a cord wrapped
around a wheel of radius R, = 33 cm, Fig. 6-9. The

3 e wheel is observed to accelerate uniformly from rest
to reach an angular speed of 30 s'l in 3 s. If there
1 is a frictional torque T,, = 1.1 N.m, determine the
[ moment of inertia of the wheel.
o) Solution: The net torque is the spplied torque due to
Fp minus the frictional torque:
T = FpRy - Top s
F
T T= 0.33 x 15 - 1.1 = 3,85 N.m.
The angular acceleration is
' Figure 6 - 3 - -
9 9 £ = AT - 0 - 10 & 2 .
At 3
Hence
T . -
I = = = 3%;5_1_??" = 0.385 kg.m°.
8

Example 2 : Calculate the angular acceleration £ of the wheel and the linear
acceleration & of the mass m . Determine also the angular velocity w of the
wheel and the linear velocity v of the mass m

at time t if the wheel starts from rest at t = 0.

radius of Assume a frictionsl torque is Tp,, the moment of
wheel R, inertia of the wheel is I (see Fig. 6-10).
o colution: We can write for the rotation of the wheel:
T= 1€,
FT where
T= FpRy = Top s
so, the angular acceleration of the wheel is
! Fy e . T . FnRo = Ter
[ T T :
Next we look &t the linear motion of the mass m .
m Two forces act on the mase (see Fig. 6-10): the
force of gravity mg acts downward and
the tension of the cord Fyp upward. S0, we can
mg write
ma = mg - FT .
Figure 6-10 If we use the relation a = Ro €, we have from last
two equations
mg - o ROE,)Ro - Topn
g = ’
I
or

ng R, - Ton
I+

E =
(<]
We may see that all quantities on the right-hand side ere constants, thus the
angular acceleration of the rotation of the wheel is constant.
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So, we can now express the linear acceleration & of the mass m , the
engular velocity & of the wheel and the linear velocity v of the mass:

a = R, &,
= @ tet =ct, {since &J°=Oatt=0)
v = Rocu = Rofit .

Example 3 : A uniform rod of mass M and length L can pivot freely about a

hinge as shown in Fig. 6-11. The rod is released
from horizontal position. At the moment of release,

pvs 44_1 > determine the angular acceleration of the rod. As-
P ! /,’ cume the force of gravity acts at the center of
. lMg S mass of the rod.
o2 o ‘o
. W . .
Solution: The only torque on the rod 1is
Figure 6 - 11 T = ME%

The moment of inertia of a uniform rod pivoted about
itse end is
I = L.

3
c- % -3

That is the angular acceleration at the moment of release. As the rod descends,
the torque cannot be constant and thue the rod’ s angular acceleration also can-

Thus

not be constant.

6-5 Calculation o f Moment of Inertiaea

Meny bodies can be considered as a continuous distribution of mess. For meny
bodies or systems of particles the moment of inertia can be calculated directly.
In this case Eq. 6-8 defining moment of inertia has form

1 = _[ Ram , (6-10)
where dm represents the mass of any infinitesimal element of the body and R is

the perpendicular distence of this element from the axis of rotation. The integral
is taken over the whole body mass.

Example 1 : Calculate the moment of inertia
of a uniform hollow cylinder of inner radius Ry,
outer radius R, and mass M, if the rotation axis

is along the axis of symmetry.

Solution: We divide the cylinder into concentric
cylindrical rings of thickness dR. Its mass is
dm = @ &v ,
where ¢ is density and dV is its volume

dv = 2TR 4R h .

So
’ dm = 27@hR 4R . Figure 6 - 12




The moment of inertia is obtained by integrating

) ) R
= 2 - 3 _ 1 4 4
I-fR dm—27T¢thdR—27Tq>h(R2—Rl).
By
The volume of hollow cylincer is
_ 2 _ 2
- vV = (TL'R2 JtRl)h
and its mess
v o= _ 2 2
M =90V = Q’JNRZ-Rl)h.
Thus
S i - . T e N BN S -
I 5~ Ry - R{)(R; + Ry) = 5 M(R; + R;) .
Note that for a solid cylinder Rl = 0 and if we put R2 = Ro’ we have for it
= 1.2
I = 5 MRT .

Example 2 : Calculate the moment of inertia of a uniform solid sphere of
radius r, end mess M about an axis through its

_ /g 2
R=y\l-y center,

Solution: We divide the sphere into infinitesimal
cylinders of thickness dy. Each cylinder has a

radius
- 2 _ 2
R = T, y
and & mass

dm = @ av = Q7FR2 dy = q7t(r§ - y2) dy .

Hence, the moment of inertia of each infinitesimal
cylinder is

Figure 6-13

T i 2
dI=%dmR2=—29(r§—y2)2dy=—2$’-\rg-4r§y2+y4)dy.

By integrating over all these infinitesimal cylinders

To
- _ £ J 4,22 4 _ 8 5
1 -de = 5 (rg 2r°y +y')dy = 15 T@ro.
Since the volume of a sphere is
= 4 3
vV = 3 r

and its mass

80

6-6 Parallel - Axis Theoren

Parallel-axis theorem states that if I is the moment of inertia of a body of
total mass M about any axis, and Icm is the moment of inertia about an axis passing
through the center of mass and parallel to the first axis at distance h saway,then
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I = I +Mn°.
cm

The proof of this theorem is as follows:

{6-11)

Figure 6-14

Let us choose our coordinate system so the origin is at the cm. Let 1 cm De the momen:
of inertia about 2z axis., Let I represent the moment of inertia of the body
about an axis parallel to the 2z axis that passes through the point A4 which has
coordinates x, and y, (see Fig. 6-14).

So the moment of inertia I about the axis through point A is

I = S fxg - %02+ Gy - 3077, (6-12)

where x;, y; and m; represent the coordinates and mass of an arbitrary point in
the body and thus the expression

2
L_X -xA) +(y1"yA ]
is the square of the distance from this point to the point A. The equation 6-12 can

be rewritten in form

I = Zmi(xg + yl - ZxAme ZyAzm-y- + \xf\ +y§)§:mi .

The first term on the right is just Ic Em \xz + y2) since the cm is at the
origin. The second and third terms are zero smce, by definition of the cm, 2im, X3 =

: 2 i
= Lm, Yy = 0 because Xomn ~ Yom = O. The last term is Mh® since X m, =M and
(xz + y2) h° where h is the distance of A from the cm. Thus we have proved
I=1_ +Mn°,

cm

6-7 Angular Momentum and its Conservation

The equation

T= IE&
describes the rotation of a rigid body about a fixed axis. This relation is the
rotational equivalent of the second law of motion for translational motion
dmv) _ 4p
= ’
at dt

F = me

where p = mv is the linear momentum.

An analogous relation can be written for the rotational motion of a rigid body:
since the angular acceleration & = dw/dt, we have

de dJdw) aL

= - L {28 A, & = (6~-13)

t 1& 1 dt dt at '’ 3
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where the quantity L = I & is called the angular momentum of the body about its
axis of rotation.

From Eq. 6-13 it is clear that if the net torgque T acting on the rotating body
is zero, then '

éL _
at 0

and L = I = constant

Thie is the law of conservation of angular momentum for & rotating body:

the total angular momentum of a rotating body remains
constant if the net torque acting on it is zero.

So, when there is zero net torque acting on a body, we can write
1w = I Ul F constant,

where I, &and ), are the moment of inertia and angular velocity at some initial
time (t = 0), and I and « are their values at some other time.

We now express engular momentum as & vector.

Suppose & particle of masse m has momentum p and cosition vector T with
respect to the origin O in some chosen reference fraume. Then the angular momentum
of the particle about point O is deflned as the vector cross product of T and P :
y Z - x e [perticle] . (6-14)

Its direction is perpendicular to both r and p
as given by the right-hand rule (Fig. 6-15). Its
magnitude is given by ’

T=_l'>x-p> £ = rp sin ®
or
0 4= rpy = 7p,
N ‘ where © is the angle between T &nd P and D
f P = p ein ©) and r, (= r sin €) are the compo-
z m nents of § and © perpendicular to T end P
respectively.
Figure 6 - 15 Now let us find the relation between angular

momentum and torque for a particle. If we take
the aerivative of 7 with respect to time we have

d;r d = - d; — - dﬁ
e A = e— + ——
at 3t & 2Pl at “PTE Xt
But

-

%f xp = vxmv = m(v xv) = 0,
since sin © = Q0 for this case. Thus

‘ @€ | 3,9
at TXae

=S
If we let F represent the resultant force on the particle, then in reference frame,

¥ = dp/a 5
dp/dt and _? ) F' . ? . 92 . ,QZ
dt dat *

But P x F = T is the net torque on our particle. Hence

al
T = =, -
\6 15)

The time rate of change of angular momentum of & particle is equal to the net
torque applied to it.
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Example : Determine the angular momentum of a particle of mass m moving
with speed v in a circle of radius r in a counterclockwise direction.

Solution: The value of the angular momentug: depends on the choice of the point O .
We calculate £ with respect to the center of the circle
(Fig. 6~16). Then ¥ is perpandicular to P s £ =
=¥ xPl=rmv. Since v = Wr and I = mr® for a
single particle rotating about an axis & distance r

away, we can write

LY ’ 2
. . Ad=ovr = mry = Iw.

The direction of 7 is perpendicular to the plane of

the circle.
Figure 6 - 16

6-8 Relation Between Torgque and Angular
Momentum Vectors

Let Fi be the position vector of the i~th particle in a reference frame,
and ch be the position vector of the center of mass of the system in this
reference frame. The position of the i-th particle with respect to the cm is i"f
where (see Fig. 6-17)

- _ >
Py T Tem* Ty
y We take the derivative of this equation:
ar, . R
m; p; = my —dtl = my :—t (F; + ch) = p; *my Vop-
> (6-16)
y r; The angular momentum cf the system with
0 cm respect to the cm 1is
Y e
Tom x Lemg = Z’(r xpl) .
z We take the time derivative
: L
Figure 6-17 e Z(——-x p1> E(r x —= ).
dt
The first term equals zero since ;’)i'x mv, = 0, so (by using Egq. 6—16)
—)
daL
—B . Y, L @ -y V- f»fx_-(zm 2 :
dt dt dt
The second term is equal zero, since Xim; Ff =M ?:m’ but cm = Q0 by definition (the
position of the cm is at origin of the cm reference frame.,.
We use
B
at 12
where Fi is the net force on o .
Then -
T S 7 ST @ =
—d-t—- = ri X i = (’Ci)cm = Tcm ’

where ?cm ie the resultant torque on the system calculated about the cm .
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We can summarize: the relation
N
_-’
t = S (6-17)
dt
- ~—
is not valid in general. It is true only when T and L are calculated with respect
to either (1) the origin of an inertial reference frame or (2, the center of mass of

a8 system of particles or of a rigid body.

6-9 Rotational Kinetic Energy

We consider the rotating body. If R; represents the perpendicular distance of
any one particle of the body from the axis of rotation, then its linear velocity is
v, = Ria) . The total kinetic energy of the whole body will be the sum of the KE of
all its particles:

1.2 _ 1,2 2 _ 1.2
KE =2 zm;vi = 3 @ ZTmR = 3Iw%,

where the angular velocity « is the seme for every particle, end I is the moment of
inertia,

So, the kinetic energy of an object rotating about a fixed axis is
rotational KE = % I1w?. (6-18)

We now calculate the work done on a body rotating
about a fixed axis. We suppose a force F exerted at &
point a perpendicular distance R from the axis of rota-
tion (see Fig. 6-18). The work done by this force is

=3 e
wo=[Fdl = [FRRray .
But F R is the torque about the axis, so
W o= .(’Cdxf’ . (6-19)

The work-energy theorem holds also for rotation of a
rigid body about a fixed axis:
as we can write

ay dw
, T=Ieg= 1978 &f - 1,84
Figure 6 -1 5 ?
g . 8 at d¢ at dy
t2 b
| then Vo= JTdnp = Jdew = 2102 -1102,
1 <l

The work-energy theorem for a body rotating about a fixed axis states that the work
done in rotating a body through an angle Py = ) is equel to the change in rota-
tional kinetic energy of the body.

By Eq. 6-19, power P as the rate of work done, is ,

p - ¥ . 49 .7y, © (6-20)
dt dt

Example: Arodof mess M is pivoted on & frictionless hinge at one end as
shown in Fig. 6-19. The rod is held at rest horizontally and then released.
Determine the angular velocity of the rod when it reaches the vertical position,

and the speed of the rods tip at this moment.
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L Solution: We cen use the work-energy theorem here;
the work done is due to gravity. The work done

s &) « CM . . s
) = by gravity is, of course, equal to the change in
L2 v gravitational potential energy of the rod. Since
oo the cm of the rod drops a vertical distence L/2,
'« 1 CM . .
[ the work done by gravity is
Do - L
b Vo= g3
L-E The initiel KE is zero. Hence, from the work-
-energy theorem,
1 2 L
s Iwc = 3.
Figure 6- 19 2 e 3

2

Since I = % ML® for a rod pivoted about its engd,

we can solve for w:
L) = 3—&_
V L

The tip of the rod will have a linear speed

v = LW= V;;E-.

7. EQUILIBRIUM AND ELASTICITY

7-1 Center of Gravity

We consider any body as made up of meny particles, each of mass m; . Although
gravity acts on each of these particles, we can show that the sum of all these
individual gravitational forces has the equivalent effect of a single force which
acts at a single point celled the center of gravity (cg). This force is equal to Mg,
where M = §:mi is the total mass of the body and g 1is acceleration due to gravity.
If g has the same value at all parts of the body (which is the usual cace), the
position of the center of gravity is the same as that of the center of mass.

The total force of gravity on a body made up of n particles of masses

Dy, Myy eeey W is
- - - - — —
F = myg+m,g+ .c. +m g = 2 m; g = Mg. {7-1)
So, a single force F=u 2 will have the seme effect on the translational motion
of the body as does the sum of all the gravitational forces acting on the particles
of the body.

y ' The position of the force F is given by
condition so that the rotational motion of the
body is the same as does the sum of &ll the
forces of gravity acting on the particles. To
determine this, we calculate the sum of all
the torques on the body about some arbitrary
point O, as shown in Fig. 7-1.

n)

3
«

z I ;i is the position vector of the
i-th particle relative to O, then the sum of
all the torques due to gravity acting on the

particles of the body is

Figure 7 -1
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