= 4. (7-9)

A
We define the strain € as the ratio of the change in length to the original length
AL
£ = _f; . (7-10)

It is the fractional change in length of an object. Now Eq. (7-8) can be rewritten
as

F AL
- = | =
A LO '
or
G= EE. (7-11)

We see that the strain is directly proportional to the stress. This dependence is
called Hook s law.

Compressive stress is the exact opposite of tensile stress; the material is

compressed. Eq. (7-11) apply equally well to compression and tension, and the values
for E are also the same.
The third type of the deformation is gheer

-
____,F A AAJeAE%W stress. An object under shear stress has equal
™ e and opposite forces applied across its opposite
L S faces. The shape of the object does change as

: Lo 3 shown in Fig. 7-6.

oo ! An equation similar to (7-8) can be applied

! [ t Lo
/’ / ‘ ’/ to calculate shear strain:
L / - A B -
; ! AL = 3 i Lo o (7-12)
— where A is the area of the surface parallel to
F the applied force (not perpendicular as for

tension) and AL is perpendicular to L . The
constant of proportionality G is called the shear
modulue and is generally one-third to one-half the value of the elastic modulus E.

As the forth type of deformation we assume a body submerged in a fluid. In this
case the fluid exerts a pressure on the object in all directions, as we shall see
in chapter 8. Presgure is defined as force per unit area and thus is the equivalent
of stress. In this case the fractionel change in volume d‘v’/V° of en object is pro-
portional to the increase in the pressure dp:

—-—zv = - —1— dp y (7‘13)

Figure 7 -6

. o H

where dV is the change of the volume, V, is the original volume, dp is the increase
in the pressure and K is proportionality constant called the bulk modulus. Since
liquids and gases do not have a fixed shape, only the bulk modulus applies to them,
and not the shear or Young s modulus. The minus sign in Eq. (7-13) indicates that the
volume decreases with an increase in pressure.

8. FLUIDS 4T REST

It is known that a liquid cannot keep & fixed shape. It tekes on the shape of
its container, but like & solid it is not readily compressible and its volume can
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be changed significently only by a very large force. 4 gas has neither & fixed shape
nor a fixed volume, it will expand to fill its container. Since liquids and gases do
not keep a fixed shape, they each have the ability to flow; they are thus often cal-
led collectively as fluids. In this chepter we will discuss the behavior of fluids
at rest.

8-1 Pressure in Fluids

First, we define the denseity ¢ of a substance as its mass per unit volume

= O
¢= v

where m is the mass of the substance whose volune is V.
The SI unit for density is kg/m3.

Pressure P is defined as force per unit area, where the force F ie understooc
to be acting perpendicular to the surface area A :

F
P = . ' -
-5 (8-1)

The SI unit of pressure is N/m2 which has the nsme pascel (Pa): Pa = N7m2.

The concept of pressure is particulary useful in deeling
with fluids. It is an experimental fact that a fluid exerts a

—/ pressure in all directions. At a particular point in a fluid

___L;ri_,_l_f_ at rest the pressure is the seme in all directions - see Fig.
”ﬂ_fi>e%fi:'__:: 8-1; if it weren 't the fluid would be in motion.
T/ _4 S Another important property of a fluid at rest is that
A | the force Gue to fluid pressure always acts perpendicularly
to any surface which is in contact with.
Figure 8 - 1 Let us now calculate quéntitatively how the pressure in

& liquid of uniform density varies with depth. Consider &
point at a depth h below the surface of the liquid, ae shown in Fig. 8-2. The pres-
sure due to the liguid at this depth h is due to the weight of the column of liquid
sbove it. Thus the force acting on the area A is F =mg = ?Ahg, where Ah 1is the
volume of the column, { is the density of the liguia, and g is the acceleration
of gravity. The pressure P is then

P - —F— = M (8‘2)
A 4
and
P = ?gh.

Thus the pressure is directly proportional to the density of the
liquid and to the depth within the liquid. In genersl, the pres-
R — cure &t equal depths is the come. Lg. 8-2 tells us what the pres-

— _ cure is at depth h in the liquid due to the liquid itself.
—h ‘ , (P+dP )A
Yy 3 — Next we consider the general case of de- — —

A termining how the pressure in a fluid varies dy -

with depth. we will want to determine the — -
Figure 8 -2 pressure at any height y above someé re- _y dﬁ F:‘i‘“
ference point, as shown in Fig. 8-3. (:;___ .
Within this fluid at the height y we consider & tiny,flat
volume of the fluid whose area is A and whose thickness is dy .«
Figure 8-3
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Let the pressure acting upward on its lower surface at height y be P. The pressure
acting downwerd on the top surface is P + dP. So the fluid pressure exerts a force
PA upward and a force (P + dP)A downward. The other force acting vertically is the
force of gravity dw

dw = dmg = S»dVg =¢gAdy,
where ¢ is the dengity of the fluid at the height y . Since the fluid ie assumed

to be at rest, our considered volume is in equilibrium, so the net force on it must
be zero:

PA - (P + dP)4 - qudy = 0
or
aP
ay = - 08 - 8~3)

This relation tells us how the pressure varies with height within the fluid. The
minus sign indicates that the pressure decreases with an increase in height.

If the pressure at height yy is P, at height y, it is P,, we can integrate
Eq. (8-3) to obtain

Py 2

(e = -feeer,

P y

1 1 8-4)
Y2

P2 -P = -J;q dy .
1

For liquids in which ¢ = constant, Eq. (8-4) can be reedily integrated:
P,-P = -¢ g(y2 - yl) ; 8-5)

For the everyday situation of a liquid in an open container (such
as water in a glass, a swimming pool, a lake, the ocean) there is
& free surface at the top. And it is convenient to measure
distances from this top surface; that ié, we let h be the depth
in the liquid where h =y, - y; as shown in Fig. 8-4.

If we let Yy, be the position of the top surface, then P2
represents atmospheric pressure P° at the top surface. So, from
Figure 8-4 Eq. (8-5) the pressure P (= P;J &t depth h in the fluid is

P = P+ ¢gh . 8-6)

Note that Eq. (8-6) is Eq. (8-2) for liquid pressure plus the pressure P, due to the
atmosphere above. '

8-2 Pagcal s Prin ciple

It is known that earth s atmosphere exerts & pressure on all objects with which
it ie in contact, including fluids. Atmospheric pressure acting on a fluié is trans-
mitted throughout that fluid. We have known the water pressure at a depth h Dbelow
the surface of a lake is P = ¢gh. The total pressure at this point is due to the
pressure of water plus the pressure of the air sbove it. This is just one example
of a general principle called Pescal ‘s principle which states that pressure applied
to a confined fluid increases the pressure throughout the fluid by the same amount.
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As a practical device making use of this
principle we see in Fig. 8-5, Here it is il-
lustrated the hydraulic 1ift - & small force
can be used to exert a large force by meking
the erea of one piston (the output) larger

Ag than the area of the other (the input).
P According to Pascal ‘s principle
Po = P1
Figure 8- 5 or
Fo . F1
ko A1
and so !
Fo A
= __Q_ & (8‘7)
F 5

8-3 Buoyancy and Archimedes Prineci ple

It is known that object submerged in a fluid appear to weigh less than it does
when outside the fluid. Many objects such as wood float on the surfece of the water.
These are two examples of buoysney. In both exemples, the force of gravity is acting

downward, but in addition, an upward buoyant force is exerted by the liquig.

The buoyant force arises from the fact that the
pressure in fluid increases with depth. Thus the upward
e . pressure on the bottom surface of a submerged object is
h=hsh, greater than the downward pressure on its top surface.
A For example, we may consider a cylinder of height h
— o F\\\Amﬁ—— whose top and bottom have an area A and which is
\__— 2 ,/ completely submerged in a fluid of density @p» as shown
in Fig. 8-6. The fluid exerts a pressure P1 = ¢fgh1 on
the top surface of the cylinder; the force due to this
pressure on top of the cylinder is F1 = Pjh = ¢fghlA
and it is directed downwarc. Similarly, the fluid exerts an upward force on the

Figure 8 -6

botton of the cylinder egual to F2 = P2A = ffgh2A.

Since F,> F,, the net force due to the fluid pressure, which ie called the
buoyant force, acts upward and has the magnitude

F = F2 - Fl = ?ng(h2 = hl) = gngh = ¢ng ’ 8-8)

where V = Ah is the volume of the cylinder. Since Pr is the density of the fluig,
the product QpgV = neg is the weight of fluid which takes up & volume equal to the
volume of the cylinder. Thus the buoyant force on the cylinder is equal to the
weight of the fluid displaced by the cylinder. This result is of course valid no
zmatter what the shape of the submerged object and it ig called Archimedes. principle.

Example 1 : A 70-kg rock lies &t the bottom of a lake. Its volume is
3.107° 2. How much force is needed to 1ift it?

Solution: The buoyant force on the rock is equal
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F = ?Hzo gv = 10° kg m'3.9,8 xn.s"2.3.lo'2 5 = 2,9,102 N.
The weight of the rock is mg = 70 kg. 9,8 m 8¢ =6,9. 102 N. Hence the force

needed to lift it ig 690 N - 290 N = 400 N. It is as if the rock had a mass of
only 400 N/9,8 m s - = 41 kg.

Archimedes’ principle also applies well to objects that fléat, such as wood.
In general we can say that an object floats on & fluid if its density is less than
thaet of the fluid. For example, 8 log whose density is 600 kg m"3 and whose volume
is 2 o> will have a mass of 1200 kg. If the log is fully submerged, it will displace
a mass of water m = ¢ vV = 1000 kg m'3. 2 m3 = 2000 kg. Hence the buoyant force on
it will be greater than its weight, and it will float to the top. It will come the
equilibrium when it disgplaces 1200 kg of water, which means that 1,2 n> or 0,6 of
its volume will be submerged. In general we can say that the fraction of the object
submerged is given by the ratio of the object's density to that of the fluid.

Air is & fluid and it also exerts a buoyant force. Ordinary objects weigh less
in air than they do if weighed in a vacuum. Because the density of air is so smsll,
the effect for ordinary solids is slight.

Exenmnple 2 : There are objects that float in air - for example helium balloons.
Let us calculate what volume of helium is needed if a balloon is to lift a load
of 800 kg (including the weight of the emply balloon). Assume @gip = 1,29 k8 m'3,
840 = 0,18 ke n3,

Solution: The buoyant force on the helium which is equal to the weight of displaced
air, must at least be equal to the weight of the helium plus the load:

F = lmﬂe + 800).g ,
or
€aip’€ = (quV + 800)-g »
Solving for V we have
v = 800 = 800 = 720 m° .
Cair ~ THe 1,29 - 0,18

8~-4 Surface Tzans ion

A number of common observations suggest that the surface of a liquid acts like
& stretched membrane under tension. For example, @ steel needle can be made to float
on the surface of water even though it is denser than the water. The surface of a
liquid acte like it is under tension, and this tension, acting parallel to the
surface, arises from the attractive forces between the molecules. This effect is

F

I "
————— Figure 8-7
_____ AAL:I'NAX 9

—————— ( Edge view )
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called surface tension z » that is defined as the force F per unit length that acts
a cross any line in a surface:

N N g

Let us consider a steel needle floating on the surface of water (Fig. 8-T7).
To pull a needle up a force F is required and thus the surface tension 7.is

R o
7 22" 8-10)

s0 the unit of the surface tension is [j] =Nm~
considerable effect on surface tension.

1

¢

= kg §72. The temperature has a

We can see how surface tension arises from the molecular point of view. The
molecules of a liquid exert attractive forces on each other; these attractive forces
are shown acting in Fig. 8-~8 on a molecule deep within the
liquid and on a second molecule at the surface. The molecule

——::‘:71§::j~—— inside the liquid is in equilibrium due to the forces of other
molecules acting in all directions. The molecule at the surface

ie true even though the forces on a molecule at the surface can
only be exerted by molecules below it (or at an equal height).
— Hence there is a net attractive force downward, which tends to
compress the surface layer slightly - but only to the point
where this downward force is balanced by an upward (repulsive)
force due to close contact tor collision with) the molecules
below. This compression of the surface means that, the liquid tries to minimize its
surface area. This is why water tends to form spherical droplets, for a sphere
represents the minimum possible surface area for a given volume.

— Z——E — is also normally in equilibrium (the liquid is at rest); this
Figure 8-8

In order to increase the surface area of a liquid, & force is required and work
must be done to bring molecules from the interior to the surface. This work increases
the potential energy of the molecules and is sometimes called surface energy. The

greater the surface area, the greater the surface energy.
The asmount of work needeé to increase the surface area can be calculated from
Fig. 8-~7 and Eq. (8-10)

W = FAx
= p2dlx
= 04,

where Ax 1is the change in distance and A4 is the total increase in area (at both

surfaces in Fig. 8=7). So we can write
W
?AA
Thus, the surface tension % is not only equal to the force
per unit length; it is also equal to the work done per uhit
increase in surface erea. Hence, p can be epecified in

N/m or mez.
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