9. FLUIDS IN MOTION

9-1 Flow Rate and the Equation of Continuity

We can distinguish two mein types of fluid flow. If the flow is smooth, such
that neighboring layers of the fluid slide by each other smoothly, the flow is said
to be stresmline or leminar flow. In this kind of flow, each particle of the fluid

follows a smooth path, and these paths do not cross over one another (Fig. 9-la).
Above a certain egpeed the flow

/\ becomes turbulent. Turbulent
/\ flow is characterized by er-
@ > ) J ratic, small whirlpool like

v\) circles called eddy currents

or eddies. (Fig. 9-1b.) Eddies

a) b) absorb a great deal of energy.
Figure 9-1 The flow can be steady,

which means the velocity of the
fluid at each point in gpace remeins constant in time (which does not imply that the
velocity is the same at all points in space).

In the steady, laminar flow of a fluid, the path taken by & given particle is
called a streamline (see Fig. 9-la). The fluid velocity at any point is tangent to
the streamline at that point. Two streamlinee cannot cross over one another, since
this would imply that at such a cross point
the velocity would not be unique. A bundle of
streamlines, such as those shown in Fig. 9-2
is called a tube of flow. Since the stream-
lines represent the paths of particles,we see
that no fluid can flow into or out of the
sides of a tube of flow.

We now exemine the steady streamline flow
of a tube of flow and determine how the speed
of the fluid varies with the size of the tube.
Let us assume the tube small enough €0 that the

A, » Figure 9-2 velocity at any cross section is essentially
constant (see Fig. 9-2). vy represents the
fluid s velocity at the cross area Ay, vy at A,. The mass flow rate is defined as

the mass that passes any cross area per unit time. In Fig. 9-2 the volume of fluid
passing through area 4, in a time At is just Aldll, where All is the distance the
£1luid moves in time At. The velocity of fluid here is v, = All/ﬂt. So, the mass
flow rate through area A, is

Am @AV, YA AL
Sty = = A
Ay At At sal 1Y1

¢ is the fluid density. Similarly we can write for area A,

Am _
vl PhoVp -
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Since no fluid flows in or out the sides of a tube of flow, the flow rate
through 4, and 4, must be equal. Thus

Q1A1v = @AV, - (5-1)
This is called the equation of continuity.

If the fluid is incompressible, which is a good epproximation for liquids under
most circumstances, then @y = e, and the equation (9-1) becomes

AV; = AV, . (9=2)

This result tells us that where the cross area of a flow tube is large, the velocity
is low and where the area is small, the velocity is high.

9-2 Bernoulli’'s Equation

We will assume the incompresible fluid whose flow is stedy and laminer. We
consider a tube of flow which varies in cross section and also in height above soue
reference level \as shown in Fig. 9-3).

—e*AbF%_
) )

b)

Figure 9-3

Let us consider the amount of fluid between area Al and A2 and calculate the
work done to move it from the position shown in (a) to that shown in (b). The fluid
at point (1) moves a distance [&[1, at the point (2) a distance 1322. The fluid to
the left of point il) exerts a pressure P1 on the assumed fluid end does &n amount
of work W; = F113[1 = PlAllxll. At point (2) the work done is W2 = - P2A215Z2; the
negative sign is present because the force exerted on the fluid is opposite to the
motion.

Work is also done on the fluid by the force of gravity. Since the net effect of
all the process in Fig. 9-3 ies to move a mass of volume Allﬁil (= A213£2) from point
(1) to point (2), the work done by gravity is

W3 = - mgly, - yl) 5
which is negative since the motion is against the force of gravity.

The net work W done on the fluid is thus

W= Wy v W, Wy s P1A1A£1 - P2A2A12 - mgy, *+ mgy;
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According to the work-energy theorem (see section 4-4), the net work done on the
fluid must be equsl to its change in kinetic energy; so

- _ 12 1 2
Pia 04 - Pa 000, - mgy, + mgy) = Fm vy - 3uv; .

The mass m has volume Alll,él = AZA £,, 80 we can substitute m = ¢ Alé\Zl =
= ¢ AZZSIZ. After dividing by AIZSZI = A21322 and rearranging we obtain

1 2 - 1 2
Pl+2¢vl+¢gyl-P2+2q'v2+qu2. (9-3)
Since points (1) and (2) cen be any two points along a tube of flow, the equation
{9-3) can be written in form
P+%qv2+ ¢gy = constant (9-4)

at every point in the fluid.
Equations (9-3) or (9-4) are called Bernoulli’'s equation.

Example : Calculate the velocity v, of a liquid flowing out of a spigot at
the bottom of a reservoir in Fig. 9-4.

Solution: For the using of Eq. (9-3) we
_ = = — choose the spigot as point (1) and the
- — ¥a- ¥ top surface of the liquid as point (2).
: Assuming the diameter of the reservoir is

e very large compared to that of the spigot,
— = — . ) v, will be elmost zero. The pressure at
both points is the same and it equals to

atmospheric pressure, so P, = P,.
Figure 9 -4 By eq. (9-3) we can write

1 .2 -
Zgv1t &8 T ¢é&y;

v, = \’2g(y2 - yl) .

This result is called Torricelli’s theorem.

and thus

9~-3 Viscosity

Fluids have a certain amount of internal friction caelled viscosity. It exists
in both liquids and gases and is essentially a frictionel force between different
layers of fluid as they move.

The fluid in contact with the stationary plate remains stationary. This
stationary layer of fluid retards the flow of the layer just above it. This layer
retards the flow of the next layer above, and so on. Thus the velocity varies line-
arly from O to do as shown in Fig. 9-5. The increase in velocity divided by the
distance over which this change is made equals dv/dz and is called the velocity
gredient. To move the upper plate requires a force. This force required F is pro-
portional to its area A and to the velocity gradient. For different fluids, the more
vigcous the fluid, the greater the force must be. Hence the proportionality constant
for this equation is defined as the coefficient of viscosity 7:

~ B =




e

dv

dz

where the velocity gradient is the rate the velocity changes per unit distance
measured perpendicular to the direction of the velocity.

F =94 ’ (9-5)

The SI unit of v is N s/m2 = Pa.c.

4
_..__f moving plate of velocity dv

///-————->
dz v velocity gradient

N Fuid |dz Y9
2=0 > ;

ST 777 (/LYY stationary plate v=0

Figure 9-5

Notice, the temperature has a strong effect - the viscosity of liquidé decreases
rapidly as temperature increases.

9~-4 Laminar Flow in Tubes

Let us consider & fluid undergoing stesdy laminar flow through a cylindrical
tube of inner radius R, as shown in Fig. 9-6.

. E;:,\‘_ ,:\R—
_ Flow —  ——> — P, (<P)
1 — —_— ey 6 | e
- 'r——y i
—_ — — iy -
_ o -
L
Figure 9-6

Since a fluid tends to sdhere to the walls of the tube, we can expect that the
fluid velocity will be near zero at the walls. We therefore assume the cylindrical
layer of fluid next to the wall tube has zero velocity. kach successive layer has
only a slightly larger velocity becauce of the viscous friction with the previous
layer. The velocity thus increases with distance from the wall anc reaches & maximum
at the center of the tube (see Fig. 9-6).

Figure 9-7
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We first determine v as a function of r by considering a solid cylinder of
fluid of radius r € R whose center line is along the center of the tube (see Fig.
9-7a). The force on this cylinder due to the difference in pressure at the ends of
the tube is

2

F = (B (9-6)

The motion of this cylinder of fluid is retarded by the viscous force exerted by the
next layer~-cylinder of fluid just outside our assumed cylinder. The magnitude of
this viscous force is given by Eqg. (9-5) where for the area A we must use the area

of the sides of the cylinder, A = 2% rL ; so, the viscous force is

F = -122er2~:, 9-7)

where the minus sign indicates that this force opposes the motion. Since the fluid
is undergoing steady flow, there is no acceleration and these two forces (9-6) and
(9-7) must balance:

- P2)Jtr

(Py - PTr? = - poxrL L
and
av _ (B; - P,)
ar 2L )

By integrating we obtain v as a function of r the distance from the center of
the tube, and note that v =0 at r =R :

v Ir
P, - P
J dv = - 1 2 J r dr ,
0 279L R
and
P, - P
v = 22 g .12, (9-8)
4y L

We see that the maximum velocity occurs at the center of the tube (r = 0). Its
magnitude is proportional to the square of the tube radiug and is also proportional
to the pressure gradient (P; - P2)/L.

Now we know v as a function of r and we can determine the total flow rate Q
through the tube, where Q = dV/dt is the total volume of fluid passing a cross
section of the tube per unit time. Since the velocity v 1is not constent across the
tube, we divide up the cross section of the tube into thin rings of thickness dr,
as shown in Fig. 9-7b. We calculate the flow through each of rings and sum over them

all to get the total flow rate. The area of the thin ring shown in Fig. 9-7b is
dA = 27%r dr ,

where 2Tr is circumference of ring and dr its width. The flow rate through this

ring is
Pp-P 2 2
dQ = vdr = (R* - r)2%r dr .
4'2L
Total flow rate through the tube is
R . R
T, - P,)
Q = qu= A mezr-r%ar:
2 L
r= 0
TP, - P,) 2 4R TP, - P )RY
= 1 Z[ZRZ_L-.L} = -1 (9-9)
2L e 4 Jp 879L




This equation is sometimes called Poiseuille s equation. It tells us that the
flow rate Q 1is directly proportional to the préssure gradient (Pl - Pz)/L and
inversely proportional to the viscosity of the fluid. Q@ also depends on the fourth
power of the tube s radius this mesns for example, that for the same pressure
gradient, if the tube radius is doubled the flow rate is increased by a factor
of 16.

10. TEMPERATURE

In this and the next three chapters we will study the intimately related topics
of temperature, kinetic theory, heat and thermodynemics. The emphasis in this
chapter is on the concept of temperature. We will often consider a particular system,
by which we mean a particular object or set of objects;everything else in the uni-
verse is called the "environment". In order to describe the state of a particular
system - such a gas in a container - we will use the quantities thet ere more or less
detectable by our senses, such as volume, mass, pressure and temperature. The number
of macroscopic variables required to describe the state of & system at any time
depends on the type of system. To describe the state of a pure gas in a container,
for example, we need only three variables, which could be the volume, the pressure
and the temperature. These quantities, that can be used to describe the state of the
system, are called state variables.

10~-1 Temperature, Temperature Scales

We begin our examination of heat phenomena with a study of temperature. In
everyday life, temperature refers to how hot or cold an object is. Many properties
of matter change with temperature. Among these are the volume of a liquid, the length
of a rod, the electrical resistance of a wire, the pressure of a gas kept at constant
volume, the volume of & gas kept at constant pressure, the color of a lamp filament
etc. Any of these properties can be used in the construction of a thermometer that
is, in the setting up of a temperature scale. We then define this temperature scale
by an assumed continuous monotonic relation between the chosen thermometric property
and the temperature as measured on our scale. For example, the thermometric substance
may be a liquid in a glass capillary tube and the thermometric property can be the
length of the liquid column.

Suppose that we have chosen a thermometric substance. Let us represent by x
the thermometric property that we wish to use in setting up a temperature scale. We
arbitrarily choose the following linear function of the property x as the tempera-
ture T which the appropriate thermometer has:

Tix) = o x

In this expression o is a constant which we must still evaluate. By choosing this

linear form for T(x) we have fixed it so that equal temperature differences cor-

respond to equal changes in x . It is also obvious that two temperatures, measured

with the same thermometer, are in the seme ratio as their corresponding x s, that is,
T(xl) Xy

g B = (10-1)
T X5 X5
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