!

pressure on the wall than if there were no attractive forces. The gas acts a&s though
it is subject to a pressure in excess of the externally applied pressure. This excees
pressure can be expressed as

2
_ n°a
Pexcese ~ V§ ’ (13-4)

where n is number of moles, & is a proportionality constant and V is the volume
of the gas. In this way we cen express pressure of the gas as

2
pT= p+ 5. \13-5)
. v .
Substituting Eq. (13-5) and (13-3) into ideal gas law - Eg. (\1C-23) we obtain
2
(p+25)(v-nb) = nrr. (13-6)
v

ﬁquation \13-6) is known as van der Waals equation of state. The constants a
and b are different for different gases and are determined experimentally.

14, CHARGE AND FIELD

The science of electricity has its roots in the observation, known to Thales
of Miletus in 600 B.C., that a rubbed piece of amber will attract bits of straw. The
word "electricity" comes from the Greek word electron, which means "amber".

The word electricity may also evoke an image of modern technology, radio, tele-
vision, microwave radsr, motors etc. But the electric force plays even deeper role
in our lives, since according to atomic theory, the forces that act between atoms ard
molecules to hold them together to form liquids and solids are electrical forces.

In this chapter we will discuss the development of ideas about electricity.

14 -1 Electric Charge - Coulombd s Leaw

#e can show that there are two kinds of charge by rubbing a glass rod with
eilk and hanging it from a long threac as it is seen in Fig. 14-1.

If a second rod is rubbec with silk and held near the rubbed enc of the first
roc, the rods will repel each other. On the other hand, @ rod of plastic (sealing

wax) rubbed with fur will attract the glass roc.lwo plastic

rods rubbed with fur will repel each other. We explain

Silk thread these facte by saying thet rubbing a rod gives it an
- electric charge and that the charges on the two rods exert
\F forces on each other. Clearly the charges on the glass and
on the plastic must be different in nature.

3. Franklin 11706 - 1790, named the kind of electricity

C::::D that sppears on the glass positive and the kind that appesrs
\\_E on the plastic negative. These names have remained to this
day.

We can sum up these experiments by saying that

Figure 14 -1 like chargee repel and unlike charges attract.
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#hen a glass rod is rubbed with silk, a positive charge appears on the rod.
Measurement shows that a negative charge of equal magnitude appears on the silk.
This suggests that rubbing does not create charge but merely transfers it from one
object to another. The charge is separated but the sum of the two is zero. Thie is
an example of the law of conservation of electric charge, which states that

the net amount of electric charge produced in any process is
zZero.

This conservation law is as firmly establiched as those for energy and
momentum.

Only within the past century has it become clear that electric charge has its
origin within the atom itself. Today’ s view shows the atom as having a heavy,
positively charged nucleus surrounded by one or more negatively charged electrons.
In ite normal state, the positive and negative chargee within the atom are equal,
and the atom is electrically neutral.

The charge on one electron because of its fundamental nature is given the

symbel e and is often referred to as the elementary charge:
e ~ 1,602 10717 ¢,

Note that e is defined as & positive number, so the charge on the electron is - e.
The charge on a proton , which is a charged part of the nucleus, on the other hand
is + e.

The SI unit of charge is the coulomb (abbr. C/. 4 coulomb is defined as the
amount of charge that flows through any cross section of a wire in 1 second if there
is a steady current of 1 ampere in the wire.

We have already seen that an electric charge exerts a force on the other
charge. Ch. A. Coulomb (1736 - 1806) measured electrical attractions and repulsions
quantitavely and deduced the law that governs them. He concluded, the force one tiny
charged object in vacuum(ideally a point charge) exerts on & second one ls propor-
tional to the product of the amount of charge on one, Ql’ times the amount of charge
on the other Q, and inversely proportional to the square of the distance r between
them; that is

Q%
F = k—=, {14-1)

-
&

where k is & proportionality constant which is usually written in terms of another
constant 55 called the permittivity of free space. It is related to k by
k = L .
4TE,

Coulomb s law can be then written
Q,Q )
F o= e—dlee ...1.2_2, (14-2)
47f€° r
where

1

12 F.m .

g, = 8,85418 x 10~

Lquation (14-2) gives the magnitude of the force that either object exerts on
the other. The direction of this force is along the line joining the two objects.
Notice that the force one charge exerts on the second is equal but opposite to that
exerted by the second on the first. This is in accord with Newton s third law.
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We cen write Coulomb s law in vector form as

7 oY% 3
= < T3 . Toy 14-3)
Y 3

—

-
where F12 is the vector force on charge Q1 due to Q2 and rgl is the unit vector
pointing from Q, toward Q; - The charges Q; and Q, can be either positive or negative
and this will affect the direction of the electric force. If Ql and Q2 have the same
sign, the product Q3Q, > O and the force on Q, points away from Qp - that is, it is
repulsive, If Ql and Q2 have opposite signe, Q1Q2 < 0 and F12 points toward Q2 -
that is, it is attractive.

It should be also recognized that Coulomb’s law applies to point charges and to
charged objects whose size is much smaller than the distance between them.If several
(or many) charges are present, the net force on any one of them will be the vector
sum of the forces due to each of the others. For continuous distribution of charge
this sum becomes an integral,

14-2 The Electriec Field E, Field Lines

According to M. Faraday an electric field extends outward from every charge and
permeates all of space. When a second charge is placed neer the first charge,it feels
a force because of the electric field that is there. The electric field at the loca-
tion of the second charge is considered to interact directly with this charge to
produce the force.

To define the electric field operationally, we place a smell test charge gq
\apsumed positive for convenience) at the point in space that is to be examined, and
we measure the electrical force F that acts on this charge. The electric field E at
the point is defined as N

F
o : {14-4)

Here E is a chtor because F is one, q, being a scalar. The direction of E is
the direction of F, that is, it is the direction in which a resting positive charge
placed at the point would tend to move.

e

The SI unite of electric field E can be obtained from Eq. (l4-4), that is

[ - Bl .ox .3
(2] c @
The magnitude of the electric field is the force per unit positive charge. The
commonly used SI unit of electric field E is % , where V ig the abbreviation of Volt.

In order to visualize the electric field, we draw a series of lines to indicate
the direction of the electric field at various points in space. These linees are cal-
lec electric field lines or lines of force.

We summerize the properties of lines of force as follows: .
1. The tangent to a line of force at any point gives the direction of E at that
point.
2. The lines of force are drawn so that the number of lines per unit crosi:sectional
area (perpendicular to the lines) is proportional to the magnitude of E. Where
the lines are close together E is large and where they are far apart E is =mall.
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3. The lines of force start only on positive charges and end only on negative
charges.
Figure 14-2 shows the lines of force for two equal like charges and Figure 14-3
shows the lines of force for equal but opposite charges.
Let us now discuss the charge-field interaction by show-
ing how we may calculate E for various points near given
charge distributions, starting with the

simple case of a point charge Q.

. Let a test charge 9 be placed a
distance r from a point charge Q. The
magnitude of the force acting on q, is
given by Coulomb’s law, or

1 %
F = . T3 .
4150 r

The electric field at the site of the
test charge is given by Eq. (14-4), or

R (14-5)
9 4 Kéb r

Figure 14-2 Figure 14-3

The direction of E'is on a radial line from Q, pointing outward if Q is positive

and inward if Q is negative (see Fig. 14-4).
To £ind E for a group of point charges:

—
» a) Calculate En due to each charge at the
\\\\ ///’ \\\\ ’/// given point as if it were the only charge
(:)4?____ present.

@ — b) Add th i
-— ese separately calculated fields
‘/// ‘ \\\\ ///ﬂ } ‘\\\ vectorially to find the resultant field

E at the point in equation form
Figure 14-4

o oy - &
E=E1+E2+E3+...=ZEn

n=1, 2, 3, «. \14-6)
The sum is a vector sum, taken over all
charges. Equation (14~6) is an example of the principle of superposition which
states, in this context, that at a given point the electric fields due to separate
cherge distributions add up vectorially or superimpose independently. The principle
of superposition for the electric field derives from experiment, and no exceptions

have been observed.

If the charge distribution is a continuoﬁs one, the field it sets up at any
point P can be computed by dividing the charge into infinitesimal elements dq. The
field dE due to each element at the point in question is then calculated, treating
the elements as point charges. The magnitude of df (see Eq. 14-5) is given by

- . 5, (14-7)
4%50 r
where r is the distance from the charge element dq to the point P. The resultant
field at P is then found from the superposition principle by integrating the field
contributions due to all the charge elements, or
E = [ . (14-8)

The integration is of course & vector operation.
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Now let us discuss how to express the element of charge for the case when the
charge distribution is continuous.

If the charge is distributed over a long wire it is useful to define the linear
charge density, that is the charge per unit length as

. Ag dq o
T= 1 — - -
Mn Y [£] (14-9)

The element of charge is then dq =T ab .

If the charge is distributed over & plane then the charge per unit area can be
expressed as

. Ag dq ¢
6= lim — = — [—2 (14-10)
£+0 As as m:l

where G is called the surface charge density.
The element of charge is then dq = G.4dS.

If the charge is distributed over a certain volume it is useful to define the
volume charge density as

. Aq dq [ c
s ifm =9 - 28 (14-11)
& AVs0 OV av mi]

The element of charge is then dq = ¢ av.

P —
In this section we saw how we could use Coulomb’s law to calculate E at various
points if we knew enough about the Gistribution of charges that set up the field.
This method always works, it is straightforward but, except in the simplest cases,

laeborious.
However as we shall see in Section 14-5, there exists another more simple

method for calculation of electric field E.

14 -3 Motion of a Charged Part icle in an
Electric Field ’

In the preceding section we have seen how to determine E for some particular
situations. Now let us suppose we know T and we want to find the force on & charged
particle and its subsequent motion, that is let us determine the equation of the
trajectory of particle.

Suppose a charged particle Q entering the uniform electrig field at X, = ¥, =
£ & = 0 with velocity ;; (see Fig. 14-5). The electric field E is pointed vertically

upward. We can write the initial condi~-

y .
tions &as

t=0

-
T E
= = gin «.
N where vox voéfos<x and voy v0 in
___________ Y° Electric field E has the components
; EW; E; 0).

V, Sin o : Because of initial conditions and

! the direction of the electric field

= » -
vector L particle moves in a plane x - .

Q Vv, COS o X
From Eq. (14-4) we can obtain the
Figure 14-5 expression for a force which exerts the
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electric field £ on an object of charge Q as

- -
F = Q.E. (14-12)
From the Newton's second law we have
L = g%
QE = mg. (14-13)
Integrating Eq. (14-13) we obtain
- - —_—
v = —g— E.t +v, . (14-14)
Let us write the single vector Eq. (14~14) as the two scalar equations, that is
= S
Vg T = Ext * Vox 0
v = S Et+v .
y m Yy oy
With respect to initial conditions we obtain
Vy = V508 &,
=£— i
vy o E.t + Vo Sin &,
Integrating Eq. (14-14) we obtain for the position vector
> _ * g, = - _
r = 295 EtS+ vt +r (14-15)
We can write the single vector Eq. (14-15) as the two scalar equations,that is
= R_gt2
X 2m Ext * voxt * %o
o) 2
y < = Eyt + voyt + ¥y

With respect to initisl conditions we have

X = Vv, tcos &,
= -Q— 2 i
¥y o Et™ + v it sin o

Eliminating t yields

7 o= = x? v x tg (14-16)

2mvo cos K

for the equation of the trajectory of the charged particle in an electric field.
It is obvious that if an angle & which makes the initial velocity ;; with the
positive x-direction equals to zero we can rewrite Eq. (14-16) e&s
2 ‘
y = —QEZ x (14-17)
2mvo ’

which is the equation of parabola.

Note that in calculating the motion of a particle in a field set up by external
charges the field due to the particle itself (that is, its self-field) is ignored.
The gravity is also ignored.

The influence of electric field on the motion of charged particles is used for
example in a cathode-ray oscilloscope for deflection of electron beam.

14-4 A Dipole in an Electriec Field

In this section we shall study the electric field E of the positive and negative
charge of equal magnitude Q placed a distance 2a apart as well as the influence of
external electric field on this configuration of electric charges which is refered

- 114 -




to as an electric dipole. The pattern
of lines of force of electric dipole
o is shown in Fig. 14-3.

+Q

As we can seen in Fig. £§-6 we
want to determine the field E due to

the positive + Q and negative - Q
charge at point P, a distance r along
the perpendicular bisector of the line
joining the charges. Assume r>> a.

Using principle of superposition
(see Eq. 14-6) we obtain for the total
Figure 14-6 field at P

- -

-
E = E,Z +E_,
where E+ and ﬁ_ are the fielés due to the positive and negative charges respectively.

The magnitudes §+ and E_ are equal:

E, =E_ = ——  —4&
4ﬂ€o @ +r

2) ¢

% -
The horizontal component cancel at point P, so the vector sum of E_ and E, points
vertically downward and has the magnitude

E = 2E, cos «.
From the figure we see that

COSO</= 2

‘82 + I‘2 .

Substituting the expressions for E, end cos & into that for E yields

E = 1 ‘ 2agQ .
4TE, (52 + r2)3/2

If r>>a we can neglect a in the denominator; this equation then reduces

to
E ~ —'——1 . J283 . 1 18)
4we, r (A=
a The product (2aQ) is celled the electric dipole moment &nd is
(:)——————————><:> represented by the symbol p. The dipole moment can be considered
to be vector of magnitude (2aQ), that points from the negative
Figure 14-7 to the positive charge as shown in Fig. 14-7.
p = 28k . {14-19)

Thus we cen rewrite Eq. (14-18) for distant points along the prependicular bisector,
as 1
E = . B (14-20)
47reo r

So the field decreases more rapidly for a dipole than for & single point cherge
\l/r3 versus 1/r2) which we expect since at large distances the two opposite charges
appear so close together as to neutralize each other. The l/r3 dependence applies
also for points not on the perpendicular bisector. In the seconéd part of this section
let us consider a dipole placed in a uniform external electric field E as shown in
Fig. 14-8.
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The dipole moment f; mekes an

+Q 2
F R :
o ﬁ_——. oriented sngle « with the external
0 . electric field E. Two equal and opposite
— —

forces F and ~ F act as shown, where

—-O g F = QF

F “Q E
The net force is clearly zero. There will,
however, be a torque on the dipole which

Figure 14-8 haes magnitude about the axis through O

given by
= QE.a sin X+ (- QE)a sin(T + &) =(2a.Q)E sin oL .

Recalling that p = 28.Q, we obtain

T = pE sinot . (14-21)
We cen write this equation in an vector notation
T= pxE. (14-22)

Thus an electric dipole placed in an external electric field E experiences &
torque. The effect of the torque ie to try to turn the dipole so p is parallel to E.

If the electric field is not uniform, the force on the + Q of the dipole may not
have the seme megnitude as the force on the - Q, 80 there may be & net force as well
as a torque.

Work (positive or negative) must be done by an external agent to change the

orientation of an electric dipole in an external field. This work is stored as poten-
tial energy U in the system. If o in Fig. 14-8 has the initial value %y the work

required to turn the dipole axis to an angle & is given as

faw = ffdo(.,

v = W

where T is the torque exerted by the agent that does the work. Combining this
equation with Eq. (14-21) yields

o

. X
U = pr sino d® = pEl(~- cos) 5
Yo %

Since we are interested only in changes in potential energy, we can choose the
reference oriantation o, to have any convenient value, in this case 90°. This gives

U = = pE cos o,

—-

or in vector symbolism
) U = - p.E. (14-23)

Many molecules, such as a diatomic molecule CO, have a dipole moment (C has a
small positive chaerge and O a small negative charge) even though the molecule as &
whole is neutral, there is a separation of charge that results from an uneven shar-
ing of electrons by the two atoms.

The electric dipoles play an important role for the understanding of dielectric
properties of matter.
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l4-5 Electric Flux - Gause s Law

Gauss ‘s law, which we shall discuss in this section is & statement of the rela~
tion between electric charge and electric field. It is a more general and elegant
form of Coulomb’s law.

Before discussing Gauss s
law itself we first diecuss the
concept of flux. Flux (symbol ¢ )
is a property of all vector fields
We are concerned in this section
with the flux of the electric
field E.

To define electric flux ¢E’
consider Fig. 14-9 which shows an
arbitrary surface S immerseg in a
nonuniform electric field E. Let
the surface be divided into
elementary surfaces dS, each of
which is amell enough so that it
may be considered to be plane.
Since this elementary surface is
infinitesimally émall,ﬁh may be

Figure 14-9

taken as a constant for all points in this surface.
Electric flux d g through this elementary surface is defined as

&y = EdS, = EdScosu , (14-24)

-

where dS° expresses the projection of dS on a surface perpencicular to E and o« is
— —

the oriented angle between E and dS. The area dS of a elementary surface can be re-

presented by a vector 4S that is

i€ = nads, (14-25)

where n is unit vector situated perpendicular to the_fgrface as. In fact, until
now, there is an ambiguity in direction of the vector dS. Thus for example in Fig.
14-9 the vector 65 could point upward or downward. However Gauss s law deals with
the flux through a closed surface - that is a surface that completely encloses a
certain volume (like a gphere). For a closed surface, we define the direction of dS
to point outward from the enclosed volume, see Fig. 14-10.

For a line entering the volume (on the left in Fig. 14-10), the angle & between
fhand'ég must be greater than g , 80

cos X < O. Hence, flux entering the en-
closed volume is negative.

For a line leaving the enclosed volume

(on the right in Fig. 14-10) the angle o
must be less than % » 80 cos x > 0. Hence
flux leaving the enclosed volume is

positive,

Taking into account the above mentio-
ned facts then with respect to Eq. (14-25)
Figure 14-10 we can write Eq. (14-24) in vector notation
' as
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d¢g = Elnds) cos o = B.dS , (14-26)

where d¢E expresses flux through the elementary surface dS. The net flux through
the closed surface is then given by

#E.d—g , (14-27)

where the integration is over all an enclosing surface.

The flux through a surface is proportional to the number of electric field

lines through it. If the number of lines that enter the volume is equal to the
number of lines that leave then there is no net flux out of this surface. The flux,

> —
g? E.dS, will be nonzero only if some lines start or end within the volume. Since
electric field lines start and stop only on electric charges, the flux will be non-

zero only if the surface S encloses a net charge.
Let us therefore imegine that

the surface S encloses electric
charges Qq, Q2, <eey Q, see Fig.
14-11. Using principle of superposi-
tion (see Eq. 14-6) we can write Eq.

(14-27) as
g—;——» # n 5 -
E.dS Z: Ei-ds =
S S i=1
=“#‘ZE1 dso.
Figure 14 - 11 Taking into account
as, = ri dw ,
where dw is the solid angle, and Eq. (14-5) we can write n
ﬁi‘ E. S fmf? ! 24 > Ty 12':-1 Ql
i=1 o i=l 4TETT i=1 4E %
Thus we have obtained Gauss s law as
n
>y
x gl i=1
#E.d = (14-28)
= =)

that states that

electric flux through & closed surface equals to the net charge
enclosed by that surface divided by & permittivity of free space.

Note that Z:Q is the net charge, tsking its algebraic sign into account. It
doesn’t matter where or how the charge is distributed within the surface. Charge
outside the closed surface mekes no contribution to the electric flux E dS.

Let us prove this statement in the following way. Imaglne a hypothetlcal closed
cylinder of radius R immersed in a uniform electric fleld E for example in a vicinity
of a charged plane, see Fig. 1l4-12.

We shall determine flux ¢ through this closed surface. This flux can be writ-
ten as the sum of three terms, an integral over the left cylinder ceap Sl, the

cylindricel surface Sp and the right cap S,. Thus
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ds, o ds,
E e,
/| E
S, S,
+Q
Figure 14-12
— —_ — - —h
¢ = §Eas = fr.as, +§ E E.dS, + ¢ E.as, .
b S S S
1 p

For the left cap, the angle o equals 180°, E has a constant value and the vectors
dS1 are paralel. Thus

- — o
[[ £.as] = [ £ cos 1280 ds, = - B, .
51
Similary for the right cap W« = Q)
j{ E. dS = ff E cos O d82 = E52 v
S
2
Finally, for the cylinder wall
if E.dS, = O©
b

because « = 90° for all points on the cylindrical surface. Thus

$p = ~ES+0+ES = O.
We see that the charge situated outside the closed surface makes no contribution
to the electric flux ¢E'

We can conclude this section with the statement that the Gauss s law tells us
that any difference between the input and outout electric flux over any closer
surface is Jue to chorge within that surface.

14-6 Applications of Gauss s Law

Gauss s law offers a simple way to determine the electric field when the
charge distribution is simple and symmetrical. In order to do this, however, we
must choose the surface (for the integral on the left side of Gauss s law - this
Eyrface is sometimes called "Gaussian" surface) very carefully so we can determine

_,
E. We normally try to think of a surface that has just the symmetry needed so E
will be constant on it or on its parts.
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Example 1 : Solid sphere of charge.

An electric charge + Q is distributed uniformly throughout a nonconducting sphere
of radius R, see Fig. 14-13. Determine the electric field E outside the sphere
{r > R) and inside the sphere (r < R).

a) ‘ b)

Figure 14-13

. Solution: The volume charge density ¢ (see Eq. 14-11) has s constant value for all
points within a sphere. Since the charge is distributed symmetrically the electric
field at all points of the sphere must be also symmetric that is E.is directed
radially outward. The vector E is therefore perpendicular to the surface so that
the angle between E and ég equals to zero.

First let us determine the electric field outside the sphere, that is for
r > R. For Gaussian surface we choose a sphere of radius r > R see Fig. 14-13a.
Thus we have

Stfﬁ.é* = §fE cos 0° as = E4%pd = 2
S [o]

£ b
S
or
E = 4—2-. (14-29)
4Jt8br

Thus for points outside the charged nonconducting sphere, the electric field has
the velue that it would have if the charge were concentrated at its center.

Inside the sphere we choose for Gaussian surface a concentric sphere of
radius r < R, see Fig. 14-13b. Gauss’'s law gives
E.ds = S
&
S ;
in which ¢~ is that part of Q which is contained within the sphere of radius r.

For a uniform charge distribution we can write

Q= ¢ %IR3 , Q= e, -gf-nr3 ,
or 3 3
RS

Q = Q




E For Geuss s law we obtain

- — - T 2 - 1‘3
ng.ds E 4%r % 5
E=~j—— Q | or
4me, R2 | E = HQSJI' (14-30)
. [°]
j Magnitude of the electric
0 é y field as a function of the

distance r from the center of
Figure 14-14 a uniformly charged nonconducting
sphere ie shown in Fig. 14-14.

Example 2 : An infinite sheet of charge.

A positive electric charge ie distributed uniformly, with a surface charge

-
density O over a very large nonconducting sheet. What is E at a distence r in
front of the sheet?

Solution: We choose as a Gaussian surface a small closed cylinder of cross-sectio-
nal area S and height 2r, arranged to pierce
the plane as shown in Fig. 14-15. Because of
the symmetry we expect E to be directed per-
pendicular to the sheet of charge on both
gices as shown, and to be uniform over the
end caps of the cylinder. Since E does not
pierce the cylindrical surface, there is no
contribution to the flux from this source.

Thus Gauss s law gives

gfff.d'é = @S +ES) = 28
o

0"

m

(]

where (G.S) is the enclosed charge.
The electric field is then
E = ——, (14-31)
2 Cb

Figure 14-15 Note that E is the same for all points
on each side of the sheet.The field is uni-~
form for points far from the ends of the

=2 >
E s
T + plane, and close to its surface.

Let us now imagine that an electric
charge is distributed uniformly over two

my
+
me
 —
+
my
'
< —

§+ parallel plates. The first one is charged

-« ———
my
€ ——

positively, the second one is charged nega-
l E tively with a surface charge density 5, see
> Fig. 14-16. We shall determine the electric
E. field E'between and outside these plates.

v
- ———
—_—
my
my
+
— >

To determine the electric field E. bet-~
ween the plates it is posible to use the

Figure 14 - 16 principle of superposition (see Eq. 14-6)
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We can see that between the plates is

5.5 +5
where E, and E_ are the electric fields caused by positively and negatively
charged plates respectively. With respect to Eq. (14-31) we obtain
E = — . (14-32p
o
From Fig. 14-16 we can see that the electric field outside the plates equsls
to zero.

14 -7 Electric Field and Conductors

In the static situation that is, when the charges are at rest, the electric
field inside any conductor must be zero. Otherwise, the free charges in the con-
ductor would move, until the net force on each, and hence E, were zero.

The direction of E for points close to the surface is at right angles to the
surface, pointing away from the surface if the charge is positive. If E were not
normal to the surface, it would have a component lying in the surface. Such a com-
ponent would act on the charge carriers in the conductor and set up surface currents

Since there are no such currents under the assumed electrostatic conditions, E must
be normal to the surface.

The fact that the electric field inside the conductor equals to zero has one
interesting consequence that is any net charge on conductor distributes itself on
the outer surface. Thie can be easily shown using Gauss s law.

Consider charged conductor of any
shape, such as shown in Fig. 14-17, which
carries a net charge Q. Let us choose the
gaussian surface S1 shown dashed in the
diagram inside the conductor.The electric
field is zero at all points on this gaus-
eian surface so the electric flux through
this surface equeals to zero, From the
Gauss ‘s law, see Eq. (14-28), it is
oBvious that the charge inside this closed surface must be therefore equal to zero.

Figure 14 -17

Now let us choose the gaussian surface 52 outside the conductor, such as is
shown in Fig. 14-17. Because this surface encloses the charge Q we can write Gauss’s

law as
e
@ E.4S = %— .
S [}
2
From the limit
lin (fE.E = % and lim sffi:’.d—’ = 0
< [ ag
5;*8 g £1*8 g

it is obvious that the electric charge cannot be insgide but on the outer surface of
the conductor only.

Gauss & law allows us to determine the magnitude of electric field E just out-
side the surface of any conductor of arbitrary shepe, see Fig. 14-18.




For this purpose we choose as our gsus-
I sian surface a small cylindrical surface,as
\\ L dS = we did in section 14-6, example 2. We choose
. / the cylinder to be very smell in height, so
-— - s that one of its circuler ends is just above
the conductor and the other is just below
the conductor’s surface. The sides of the
’// \\ cylinder are perpendicular to the surface of
1 conductor. The electric field is zero inside
& conductor and is perpendicular_to the sur-
Figure 14-18 face just outside it. The electric flux pas-
ses only through the outside end of our
cylinder. We choose the area S of the flat cylinder end small enough so that ir is
uniform over it. Then Gauss s law gives

£.d8 = Eas = & . &ga&
£y &y 2

where G is the surface charge density at the place of cylinder.
Thus for magnitude of electric field at surface of conductor we obtain

E = <, (14-33)

)

This is a very useful result which applies for any shape conductor.

Finally we note that, as a general rule, the surface charge density tends to be
high on isolated conducting surfaces whose radii of
curvature are smell, and conversely. For example, the

\Qk’ ] 42:/ charge density tende to be relatively high on sharp
\\\<é2§2227/ /égégi points and relatively low on a planeq?egions on a con-
— ducting surface. The electric field E immediately above

// — a chargec surface is proportional to the surface charge

//W\ t \\\ density G (see Lq. 14-33) so that E'may also reach very

high values near sharp points, see Figure 14-19. Corona
Figure 14 - 19 discharges from sharp pointe during thunderstorms sre a
familiar example.

14 -8 Work and Potential in an Electriec Field

The electiric field around charged bodies can be described not only by & vector E
but also by a scalar quantity y which is called the electric potential. To introduce
the electric poﬁgntial let uf‘imagine the unit positive charge Qo situated in the
electric field E. The force Fe on this charge is given by

— >

Fau = Q E -
The work done by this force to move the unit charge Q, from point K to L is:
. L
W = f Fel.dr = QO E.dar .
K K

Let us imagine that the electric field E is procuced by a single positive point
charge Q which is situated in the origin of the reference frame, see Fig. 14-20.

Electric field of a single point charge Q (see Eq. 14-5) can be written in
vector notation as
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— —
E = 1 —QE .
4TE r
o
E_ -
where r° is unit vector pointing

outward from & positive charge.

In this case we can rewrite
the expression for work as

L
[ 8 7 .ar =
Qo f > ro.dr

W =
K 471'801'
T
L L
Q.Q QQ
_ o j dr _ 0 {l -
4JrE°K r 47(60 re
_ S0 [1 . 1]
= - bl ]
43Y€o Ty Tg
(14-34)
"’6 - "6 - _ o
where r°.dr = |r°l.ldr| cos « =!drl cos« and
+Q cos o = ‘?'ﬁ: . Notice that | arl #alT!.
dr
. Figure 14-20 From Eq. (\14-34) it is obvious that the work

done by the electric field in moving a charge Qo
from one position to another depends only on the two positions and not on the path
taken. It is also obvious when a charge Qo is moving from one position to the same
pogition in a closed path the work done by the electric force equals to zero.

This ie a basic property of electrostatic field which we can write as
@E.d? = 0. (14-35)
This equation states that the electric force is a conservative force, so it is
possible for electrostatic field to define potential energy end potential.
The potential energy U of the unit point charge Qo in electrostatic field is
defined as work done by the external force Fext in moving the charge Qo from the
reference position B to & given point P. For the sake of simplicity let us imagine

that the potential energy in the reference position B equals to zero. The external
force acts against the electric force so that we can write ‘

—— —_—
Fext = ~ Fe1 -
For potential energy we obtain
3 P P
u o= [F_,.ar = - [Fo . = -q [E.ar. (14-36)
B B B

Electric potential (or simply potential) is defined as & potential energy per
unit positive charge that is

—

(14-37)

—.€
fl
ch
[}
t
we—
B}
o

We can use Eq. {14-37) to obtain the expression for potential difference between
points K and L for the situation which is shown in Fig. 14-20, that is
L
—
S[Edr = e - ¥ (14-38)
K
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For potential of the point L we obtain

—

L
W o= Py - fE.dr . (14-39)
e

Since only the difference in the function ¢ at two points is ever involved we
have to choose the reference point K. For convenience we will often take the
reference point at infinity and we will equal potential at this point to zero. In
this case for potential of the point L we have

L
9, = -[E.ar. \14-40)
oQ

The electric potential can be represented graphically by drawing equipotential
lines or, in three dimensions equipotential surfaces. An equipotential surface is
one on which all points ere at the same potential. That is, the potential difference
between any two points on the surface is zero, and no work is required to move a
charge from one point to another. an equipotential surface must be perpendicular to
the electric field at eany point. If this were not so - that is, if there were a
component of E parallel to the surface - it would require work to move the charge
aslong the surface against this component of E. This would contredict the idea that
it is an equipotential surface.

The potential at any point due to a group of point charges is found by
a) calculating the potential Y; due to each charge, as if the other charges

were not present and
b,/ adding the quantities so obtained or

n n
Y= 21Y = Z_:

1 (14-41)
i=1 47[6

HID
g »

1

The sum used to calculate Y is an algebraic sum and not a vector sum like the
one used to calculate E for a group of point charges \see Eq. 14-6). This is a major
advantage in using electric potential. '

If the charge distribution is continuous the sum in Eq. (14-41) ie replaced

[ay = f—ﬂ (14-42)

47[6_

by an integral, or

where dQ is the element of charge, r is its distance from the point at which v is
to be calculated and dy is potential it establishes at that point.

Let us now find the relation between electric field and potential. For this
purpose we shall consider the value of potential at two nearby points (x, y, z) and
\x + dx, y + dy, z + dz). The change in ¢ going from the first point to the second
is

dy = —aidx+z‘{,—dy+—aidz . 114-43)
ax 2y az

On the other hand from the definition of potential (see Lq. 14-38) we have

dy = - E.dr . (14-44)
The infinitesimal vector displacement dr is
ar = —i.,dx+—36y+fdz.

Ag far as the equations (14-43) and (14-44) become identical we have
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¢ ax + 2 4y + 22 4 E dx -E_ dy -E_a
z = - - -
7 x 9y ¥ dg x % y y z 92
or 5 . .
- A = _ 2%,
By x '’ Ey y° E, = dz °

Thus we can identify E as

=y
"

- grad ¢ . (14-45)
The minus sign came in because the electric field points from a region of positive

potential toward a region of negative potential, whereas the vector grad vy is
defined so thet it points in the direction of increasing vy .

The unit of electric potential is joules/coulomb (see Eq. 14-37) and is given
a special name the volt (abbr. V). Note also that a positively charged object moves
from the place with a high potential to a place with 2 low potential; a negative
charge does the reverse. Potential difference, since it is measured in volts, is
often referred to as voltage.

14-9 Electric Potential and E lectric
Field - Appliceations

In the previous section we have seen that the electric field E and electric
potentiel Y are quantities which are jntimetely related and often it is a matter
of convenience which one of them is used for solution of given problem.

In thie section we shall show how to determine the electric potential from the
known electric field and then the reverse problem, how to determine the electric
field from the known potential.

Example 1 : Potential Due to Single Point Charge.
Determine the potential ¢ et a distance T, from a positive single point charge Q.

Solution: The electric field produced by a positive single point charge has a
magnitude (see Eq. 14-4)

E o= —2— S (14-46)
+Q < 45[-&0 r
and is directed outward from the charge.
\\\\ ///” - The potential can be determined directly
dr . : s
e S - - —orm from Eq. (14-40), integrating along a field
n -2 line from infinity to ry, ‘see dashed line in
%/// \\\\ E Fig. 14-21. We can see that E points to the
right and the elementary integrating path

dr, which is always in the direction of
Figure 14 - 21 motion, points to the left. Therefore in
Eq. (14-40) we have
i o
E.dr = E cos 180" dr = - E.dr .
However as we move a distance dr to the left, we are moving in the direction
of decreasing r because r is measured from Q as an origin. Thus we have to
change the sign in (- dr) once more so that we obtain

E.dr = Edr. (14-47)
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Substituting Eq. (14-46) and Eq. (14-47) into Eq. 14-40 we have

'L, FL L
&fL=-fE,df?=—fEdr=-f L. 8 g -—=_ (14-48)
. o 4 TE

r? 4 Me Ty
This is the expression for potential at r relative to infinity. Note that
the potential decreases with the first power of the distance whereas the electric
field decreases as the square of the distance. To obtain the equipotential sur-
faces for a single point charge it is possible to use Eq. (14-48). We can see
that the surfaces where ¢ = const are surfaces with constant r, therefore the
equipotential surfaces are spheres concentric with the point charge.

Example 2 : Electric Field Due to Dipole.
Calculate the electric field at any point P in xy plane due to dipole. Assume
that the point P is not too close to the

dipole, see Fig., 14-22.

y P{x)y)
r Solution: The electric potential at point P
ie the sum of potentials due to each of
+QQ $ the two point charges (see Eq. 14-41) so
a
g > ¢ = Lfl . ({,2 & ﬁ_“l
0 X 4 TE, r,
a «Q
ad & ) Q T, -1
4 ]rCo Ty )
We now limit our coneiderations to points
Figure 14 -22 which are distant from dipole that is
r>>2a. Then we have
r, -1 % 2a cos f3 and ryr, * r?
so we have
v _S 2a cgs 8 _ p cos f3 , (14-49)
4 71'?_0 r 4 Co r

where p = 2aQ is the dipole moment (see Eq. 14-19).

Now we shall calculate E as a function of position. From symmetry, E for
points in the plane xy lies in thie plane. We shall express it in terms of its
components Ex and Ey, making use of

2 2 2 J
r = x+y and cos B = ,
2 4 y2
Thus we obtain
= P -4
amE, (3% + y2)3/2
We find E, as a x-component of Eq. (14-15) so
g = -%¢ . _3p 5 s
X /
d x ATE, (2 4 43)
and similary
E = %2 . __P (x2 - 2y%)
y 5/2 °
ay 4][80 (x2 + y2)
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Putting y = O in the expression for Ey describes distant points in the
median plane of the dipole and yields

P 1
E, = - —=7 {14-50)
y 4Jre° X ! 3

which sgrees with the result found in Section 14-4, see Eq. (14-20). The
- ° . K3 a 3 o 3 .

minus sign in Eq. (14-50) indicates that E points in the negative y direction
(see Fig. 14-22).

In this example we have shown that for many charge distributions, it is
much easier to calculate y first, and then E from Eq. (14-45), then to calculate
¥ due to each charge from Coulomb ‘s law. This is because ¢ due to many charges
is a scalar sum, while £ is a vector sum.

14 -10 Capacitance

Let us consider two large conducting plates which are parallel to each other
and separated by a distance d small compared with the plate dimensions. Let us
' suppose that equal and opposite charges t Q
S have been put on the plates, see Fig.14-23.
. N - [ & " The charges will spread out uniformly on
l 1 l lE l l .d the inner surfaces of the plates because
- - - they will be attracted by the charges on
S the other plate. The plates will have
surface charge density @G, and 6 respect-
Figure 14-23 ivelys
In this Figure S describes the area
of the plates, and G'S is the total charge on each plate.
From Exasmple 2, Section 14-6, we can see that the electric field outside the
plates is zero and electric field between the plates has the magnitude (see Eq.
14-32):

(o]

The plates will have different potentials ¥y and ?2. Potential difference (?l-¢2)=
=V is called voltage. This potential difference can be expressed as the work per
unit charge required to carry a small charge from one plate to the other, so that

Lo}
V=1.E.d=l—g—d=—d—§—"=—d—Q. (14-51)
o & S Ebs
We find that the voltage is proportionel to the charge. Such a proportionality
is found for any two conductors in space if there is a positive charge on one and a
equal negative charge on the other. We can therefore write this equation of propor-
tionality as
Q = CV ? (14-52)

where C is the constant which is called capacitance and the system of two
conductors is called capacitor. Thus from Eq. (14-51) for our parallel-plate
capacitor we have £.8 .
C = —g . (14-53 )

The cepacitance C is a constent for a given capacitor. Its value depends on
the size, shape and relative position of the two conductors and also on the material
that separates them.
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A single isolated conductor can also be said to have a capacitance. In this
case, C is defined as the ratio of the charge to absolute potential ¢ on the
conductor (that is relative to ¢ =0 at r —»oo) so that the Eq. (14-52) remains
valid.

For example, the potential of conducting sphere of radius R carrying a charge
Q is

y= - 8 (14-54)
4TE R
o
so its capacitance is ¢ = %%— = 4.W£bR y

Note however that a single conductor is not considered a capacitor.
The SI unit of capacitance that follows from Eq. \14-52) is the coulomb/volt.
A4 special unit, the farad (abbr. F) is used to represent it. Thus

1F = l—c.
1v
The submultiples of the farad, the microfarad (1 pF = 10—6 F) and the picofarad

\1 pF = 10"12 F) are more convenient units in practice.

14 -11 Electric Energy Storage

All charge configurations have a certain potential energy, equal to the work
that must be done to assemble them from their initial positions originally assumed
to be infinitely far apert and at rest. Let us now determine this potential energy.

Consider first the work which must be done on the system to bring some charges
into a particular arrangement. Let us imagine we have two charges Ql and Q2 very
far apart from one another as indicated in Fig. 14-24a.

o2
Q.
légi%g/” 7 12
C%' Cﬂ
a) ‘ b)
Figure 14 - 24

We shall calculate the work for moving the charges together until the distance
between them is ro (see Fig. 14-24b). The force that has to be applied (suppose
for example that Ql is situated in origin of reference freme) is equal and op-
posite to the Coulomb force (see Eq. 14-2)

1.2 ,Q Q,Q
U, = W= j 12 (- ar) = —212 (14-56J
od 47(501' 471'501'1’2

Because r is changing from infinity to ry o, the increment of displacement is
’
(- dr).
We also know from the principle of superposition that, if we have many charges
present, the totel force on any charge is the sum of the forces from the others. It
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follows, therefore that the total energy of the system of a number of charges is
the sum of terms due to the mutual interaction of each pair of cherges. If Q; and
Qj are two of the charges and rij is the Gistance between them the energy of that
particular pair is

e %
= 411T£°rij

The total electrostatic potentisl energy UE is the sum of the energies of all
possible pairs of charges, or

Qe

u, = ?12.2 —ij (14-57)
i,J 47r£ T
it 1J

If we have a distribution of charge specified by a charge density ¢ then the
charge dQ; = ¢; dV; and the charge de = fﬁ de. The sum in Eq. (14-57) must be
of course replaced by an integral, so we have

up = . —p—@‘]—-dV av . (14-58)

4ﬂrEZ°r1J

all space

Notice the factor % , which is introduced in Eq. \14-57) and Eq. (14-58)
because we have counted all pairs of charge twice. Next we notice that the integral
over aV. in Eq. (14-58) is just potential at (i), that is

J
fi =J
47(EorlJ
so that we can write Eq. (14-58) as

Ug

or gsince the point (j) no longer appears we can simply write

1
3 I?’i ¥; 4Vs

up = %jqu{dv [v] (14-59)

This equation expresses potential energy in the case of the continuous charge
distribution.

This potential energy reminds us of the potential energy stored in the gravi-
tational field or in & compressed spring.

Similary a charged capacitor stores electrical energy. The energy stored in a
capacitor is equal to work done to charge it. Charging a capacitor is to remove
charge from one plate and add it to the other plate., Initially, when the capacitor
is uncharged, it requires no work to move the first bit of charge over. When some
charge is on each plate, it requires work to add more charge of the same sign
because of the electric repulsion. The more charge already on a plate, the more
work is required to add additionesl charge. The work needed to add a small amount of
charge dq, when a potentiasl difference V is across the plates is

aW = Vdq .
Since V = ¢/C at any moment, the work done is
¢ a 1 g2
= = = . (14-60)
J V dq z f q dq 5o 4
0 )
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Teking into account that W = U and with respect to Eq. (14-52) we obtain for the
energy stored in a capacitor

_l.2 .1
up = 3o = L. (14-61)

Energy is not a substance and does not have a definite location. However it is
reasonable to suppose that the energy stored in a capacitor resides in the electric
field between the plates.

As an example let us calculate the energy stored in a parallel - plate capacitor
in terms of an electric field. The electric field between the plates is approximstely
uniform (see Fig. 14-23) and its magnitude is (see Eq. 14-51)

a ?

where d 1is the plates separation. The capacitance for the parallel-plate capacitor
is given by Eq. (14-53) as

EL
= =2
¢c = =5 -
Thus for potential energy we obtain
&S
- 1l 2 _ 1 Sov.2.2 _ 1 2 _
UE = 5 cve = 5 5 © ac = Vi EbE (s.8) . (14~62)

The quantity (S.d) is the volume between the plates. If we divide both sides of Eq.
(14-62) by this volume we obtain an expression for the energy per unit volume or
energy density w

v = yes? [ (14-63)

Although we derived this equation for the special case of a parallel-plate
capacitor it is true for any region of space where there is an electric field. There-
fore we can say that if an electric field E exists at any point in space the energy
density is proportional to the square of the electric field in this point

14 -12 Dielectrics

In this section we shall discuss the properties of matter under the influence
of the electric field. In Section 14-7 we considered the behaviour of conductors in
which the charges move in response to an electric field to such points that there
is no field left inside a conductor. Now we will discuse insulators, which are also
celled dielectrics, that is materisls which do not conduct electricity.

First of all we shall try to understend in atomic terms, what happens when we
place a dielectric in an electric field. There are two possibilities.

4. The molecules of some dielectric have a nonsymmetric arrangement of their
atoms. For instance the water molecule H20 has a nonsymmetric arrangement of hydro-
gen and oxygen atoms. There is an averasge positive charge on the hydrogen atoms and
negative charge on the oxygen. Since the effective center of the negative charge and
the effective center of the positive charge do not coincide the totel charge distri-
bution of the molecule has a dipole moment D , see Fig. 14-25a. Such a molecule is

called a polar molecule.

When materials, called polar, are placed in an external electric field, the
electric dipole moments p tend to align themselves with an external electric field,
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as in Fig. 14-25b. Because the molecules are in constant thermal agitation, the
degree of alignement will not be complete but will increase as the applied electric
field is increased or as the temperature is decreased.

m

/5 RSN
> =2
>

- charge  Center of
+ charge

=2
Center of @ (\\
=

a) b)
Figure 14 - 25

B. The molecules of some gases, like oxygen, which has a symmetric pair of
atoms in each molecule, have no inherent dipole moment because the effective centers
of the positive and negative éharge are the seme, see Fig. 14-26. Such molecules are
called nonpolar molecules.

‘Let us have a look what happens if such a gas is
situated in an external electric field. We shall
discuss the simplest case - monoatomic gas (for
instant helium). When such an atom is in an electric
field, the electrons are pulled one way by the field
while the nucleus is pulled the other way. Although
the atoms are very stiff with respect to the electri-
cal forces, there is a slight net displacement of the

\™Center of + and - charge

Figure 14 - 26 effective centers of charge, and a dipole moment is
induced.
We have seen that whether or not the moleculee have permanent electric dipole
moments, they acquire them by induction when placed in an electric field. It is said
that the dielectric becomes polarized.

We shall now study from the macroscopic view what happens if a dielectric is
placed in the electric field. Faraday in 1837 first investigated the effect of fill-
ing the space between the plates of a parallel-plates cepacitor with a dielectric.
His experiments showed that the capacitance of such a capacitor is increased when an
dielectric material is put between the plates. If the dielectric completely fills
the space between the plates, the capacitance is increased by a factor £, which
depends only on the nature of dielectric. The factor €, is a property of the di-
electric and is called the dielectric constant. The dielectric constant of a vacuum
is unity, the dielectric constant of all other dielectrics is greater than unity.

Let us imegine that we have two identical capacitors in one of which we placed

a dielectric. Let the capacitance of capacitor with dielectric be Cd end the capaci-
tance of the second capacitor be Co' Let us place the same charge on both of them

so that, with respect to Eq. (14-52), we can write
Q = Cdvd = COV° .
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Let us denote

Cq
ST
Thus
a4 . & = =2 or v, = —e (14-64)
<, r vy a e

We can see that the potential difference V43 between the plates of capacitor with
dielectric is smaller than that for a capacitor without & dielectric by a factor
1/5r. Let us now explain the above mentioned facts.
For this purpose consider a dielectric slab, showing the random distribution
of positive and negative charges, see Fig. 14-27a. An external field E, separates
the center of positive charge in

- the slab slightly from the center
; T+ i . 7 : of negative charge, resulting in
- - >
) T+ . + ‘EL+ the appearance of surface charges,
" - - o+ . 2 & see Fig., 14-27b. No net charge
* -t " ™™ |+ exists in any volume element

Tt - S+, - . located in the interior of the
E:O go o slab, see Fig. 14-27c. The ..

o —_— _ surface charges set up a field E

a) b) 0) which oppoces the external field

E;. Thus we can see that when a
Figure 14-27 dlelectrl? ma?er%al ie p?aced in
an electric field thers is a ne-
gative charge induced on one surface and positive charge induced on the other.
The positive induced surface charge must be equal in magnitude to the negative
induced surface cherge. Note that in this proces electrons in the dielectric are
displaced from their equilibrium positions by distances that are considerably less

than an atomic diameter. There is no transfer of charge over macroscopic distances.

Figure 14-27 shows that the induced surfgge charges will always appear in such
a way that the electric field set up by them (E) opposes the external electric field
Eo' The resultant field E in the dielectric is the vector sum of E; and E° that is

—

e d -,
E = Eo + L. (14-65)

It points in the same direction as ﬁ; but is smaller. If we place a dielectric
in an electric field, induced surface charges appear which tend to wesken the

original field within the dielectric. .
Let us apply Gauss s law to the parallel~plate capacitor without dielectric isee

Fig. 14-28a). Let the gaussian surface be shown by broken line. Thus we obtain

"_I'-_i-”_J__Q-‘";V"l“‘i-‘"i- ++q "h’“;“‘;“"”"?»"'"'4-""1'+q
‘ | I ... No-a
______________ g
B
S S S S +q
S Nt T S
a) b)

Figure 14 - 28
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-
goﬁ(fo.ds = EOEOS = q

or
- q
E = ==, (14-66)
° €S
o
If the dielectric is present (see Fig. 14-28b), Geuss s law gives
—_— 4
& fff’.ds = gF5 =a-aq (14-67)
or
E = & -2 (14-68)
£OS €55

in which q°, the induced charge, must be distinguished from q , the so - called free
charge on the plates. These two charges, both of which lie within the gaussian
surface, are opposite in sign, {(q - q’) is the net charge within the gaussian surface.

As far as the relation V = E.d for a parallel-plate capacitor holds whether or
not dielectric is present we can write with respect to Eq. (14-64).

v E
0 = -—2 = &
Vi E T
or
Eg
E = e (14-69)
Combining this with Eq. (14-66J, we have
B om e (14-70)
(24
Inserting this in Eq. (14-68) yields
i - 2 -3 \14-71)
Eofrs €S &S
or
a" = a1 - -l—> : (14-72)
Er

This expression shows that the induced surface charge q  is always less in
magnitude than the free charge q and is equal to zero if no dielectric is present
(that is if En = 1).

Now let ue substitute in Eq. (14-57) equation (14-72). We obtain
—)? 1
onffE"’“' = q—q(l--—a--).
T
After some rearrangement we obtain

€ ﬁg $.a8 = ¢q. (14-73)
(o] r

This important relation, although derived for & parallel-plete capacitor, is
true generslly.

Note the following:

1) The flux integral now contains a dielectric constant &, .

2) The charge gq contained within the gaussian surface is taken to be the free
charge only. Induced surface charge ig deliberately ignored on the right side of
this equation, having been taken into account by the introduction of &, on the left
side. Equations (14-67) and (14-73) are completely equivalent formulations.
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Let us rewrite now Eq, (14-71), which applies to a parallel-plate capacitor
conteining a dielectric, as

4 - £°< ot et (14-74)
S 505rs/ S

The quantity in parentheses(see Eq. 14-70) is the electric field.g in the di-
electric. The last term in Eq. (14-74) is the induced surface charge per unit area.
We call it the electric polarization P, or

P = < - (14-75)

The electric polarization P can be defined in an equivalent way by multiplying the
numerator and denominator in Eq. (14-7%) by d , the thickness of dielectric, or
P = L&, (14-76)
Sd

The numerator is the product (q’'d) of the magnitude of the polarization charges
by their separation. It is thus the induced electric dipole moment of the dielectric.
Since the denominator (S d) is the volume of the dielectric, we see that the electric
polarization can also be defined as the induced electric dipole moment per unit
volume of the dielectric. This definition suggests that since that the electric di-
pole moment is a vector the electric polarization is also a vector,its magnitude
being P. The direction of B is from the negative induced charge to the positive
induced charge, as for any dipole.

We can now rewrite Eq. (14-74) as
- =
< - £°E+P. (14-77)
The quantity on the right occurs so often in electrostatic problems that we
give it a specisl name electric displacement D, or

D = €F +P (14-78)

in which
DEPE. o
D = —=. (14-79)
' [c.n™2]
Note that the units for P and D are |C.m s
Since E and P are vectors, T must also be one, so that we have
D = gL +F. ‘ 114-80)
In Fig. 14-29 are shown vectorslﬁ, Eof'and P in the dielectric (upper right)
and in the gap \upper left) for a parallel plate capacitor with a dielectric. In

|5>=0

Figure 14-29
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Fig. 14-30 sre shown samples of the lines which are associeted with EL eog and ;.

+ + o+ o+ + + +q
- : T = = = -q
+ + + + + + +q
- - - - - - - - -q
St St St
-> > g
D & E P
Figure 14 - 30

From the definitions we see the following:

1. Vector D (see Eq. 14-79) is connected with the free charge only. We can represent
the vector field of B'by lines of 3, just as we represent the field of E by lines
of force. Figure 14-29 shows that the lines ) begin and end on free charges.

2. Vector P is connected with the polarization cherge only. It is also possible to
represent this vector field by lines. Figure 14-29 shows that thé lines of B
begin and end- on the polarization charges.

3. Vector E is connected with all charges that are actually present, whether free or
- « . P4
polarization. The lines of E reflect the presence of both kinds of charge.

4. Vector T vanishes outside the dielectric, T has the same value in the dielectric
and in the gap and E has different values in the dielectric and in the gap.

The vectors D and B can both be expressed in terms of E alone. So, putting Eq.
{14-66) into Eq. (14-69) and with respect to Eq. (14-79) we obtain, extended to a
vector form

D = Eb Ef E. {(14-81)

We can also write the polarization (see Eq. 14-75 and Eq. 14-72) ase

P = 2. - 4 (1 - .l_) .
s 3 Ep

Since -%— is D we can rewrite this, using Eq. (14-81) and casting the result
into vector form as

P = 80( Er -1)E. (14-82)
~+
This shows clearly that in vacuum ( Ep = 1) the polarization vector P is zero.

The definition of D given by Eq. (14-81) allows us to write Eq. (14-73), that
is Gaues s law in the presence of dielectric, simply es

gff B.a8 = q, (14-83)

where q represents the free charge only.

Finally it must be pointed out that the vector E is, still, the basic electric
field vector. The vectors P and D sre useful auxilisries for more advanced work.




