15. ELECTRIC CURRENT

Until the year 1800, the technical development of electricity consisted mainly
of producing a static charge by friction. A number of machines had been built that
could produce large potentials, but they had little practical value.

In 1800, an event of great practical importance occurred. 4. Volta invented
the electrical battery, and with it procuced the first steaedy flow of electric
charge - that is, a steady electric current.

15-1 Current,Current Density,Conservation
of Charge

in metals the valence electrons are not attached to individual atoms but are
free to move about within the lattice and are called conduction or free electrons.
These electrons are in random motion like the molecules of a gas.

If we have & metallic conductor which is connected to a battery, an electric
field will be set up at every point within the conductor. This field E will act on
the electrons and will give them a resultant motion in the direction of - E. We say
that an electric current is established. The average electric current in a conductor

ie defined ac
1 = L9 (15-1)
At
where AQ is the net amount of charge that passes through a cross section of con-
ductor at a given point during the time interval At. If the current is not
constant in time, then we can define the instantaneous current at any moment as the
infinitesimal limit as At — 0 so

I = 129 . 9q (15-2)
at+0 Nt at

Electric current is measured in coulombs per second, this is given s specisl
neme asmpere \(apbr. A).

4 more general kind of current involves charge carriers moving around in a
three dimensional volume. To describe this we need a concept of & new microscopic
quantity - the current density 31 The current density is a vector which is a
characteristic of a point ingide a conductor rather than a conductor as a whole.
Thus for the current dI passing through an
elementaery surface srea dS we can write

41 j.ac (15-3)

where

—_— —tn

dS = n.dS . (15-4)
The vector B is the unit vector normal to as,
see Fig. 15-1.

The vector j at any point is oriented in
the direction that a positive charge carrier
would move at that point,

The electric current passing through any
Figure 15 -1 surface S (see Fig. 15-1) is the integral over
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all the surface in question, so

L = Jf?.d_é. (15-5)
s

The current density is related to

the average flow velocity of the charges.
Suppose that we have a distribution of
charges whose average motion is a drift

with the velocity Vv . As this distribution

passes over & surface element As, the
charge AQ passing through the surface
element in a time At is equal to the
charge contained in & parallelepiped whose
pase is NS and whose height is Vv At, as
shown in Fig. 15-2.

Figure 15-2 The volume of the paresllelepiped is
As(vAt) which when multiplied by the

volume charge density @y will give A Q. Thus
Mg = ¢y vOt Bs. (15-6)

The charge per unit time represents the current passing through the surface area
AS. Coming to the limit At —+dtand AS - dS we obtain g

-
a1 = 98 = g, vas = g v.dS. \15-7)
dat
By comparison of Eq. 15-7 and 15-3 we obtain for the current density
- -
J = ¢y V- (15-8)

If the charge distribution consists of individual charges, each with charge e ,
number of charges per unit volume n and the charges are moving with the mean velo-
city ¥ , then the current density is

. -

J = env . (15-9)

The current I out of a closed sur-
face S represents the rate at which the
charge leavee the volume V enclosed by S.
i One of the basic laws of physics (see
Section 14-1) is that electric charge
is indestructible; it is never lost or
created. Electric charges can move from
place to place but never appear from now-
Closed surface S here. If there is & net current out of
closed surface, the smount of charge
Figure 15-3 inside must decrease by the corresponding
amount (Fig. 15-3).
We can, therefore, write the law of conservation of charge as

Ta8 = - &« ) (15-10)
Je = - 3%t ‘Sinside

S
The charge inside can be written as a volume integral of the charge density

Qinside = f{’/ ?V av .
Thus we obtain
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j.as = - Ed: fgev av . (15-11)

Letting the volume in question shrink down around any point (x, y, z) the con-
servatioq of charge law can be written

- 20
div j = - —X, (15-12)
72t

No charge can flow away from a place without diminishing the amount of charge
that is there.

The time derivative of the charge density ¢ is written ac partial derivative
since ey will usually be a function of spatisl coordlnates as well as time.

As an example we use the conservation of charge law to
determine the current in the point of network where several
conductors meet, see Fig. 15-4.

We ghall suppose stationary case, that is the cace when
& volume charge density @y 1is not function of time, Thus
we can write Eqg. 15-11 as

fj’.dé’ = 0. : \15-13)

Conservation of charge law for a closed surface S which
contains parts of different conductors (that is S1y Spy e,

Figure 15-4 Sn - see Fig. 15-4) then gives
- - - —
J dS JI Je du + f Jj.ds + ... + lf JdS =1, + I, + ...+ 1 =0 .
82 < (15-14)
or
ZIK - O . (15-15)

This equation is a maethematical statement of the Kirchhoff's first or junction
rule: the algebraic sum of the currents into the junction point must be zero. Charges

that enter & junction must also leave ~ none is lost or gained.

15-2 0Ohm e Law, Resistance, Resistivity,
Conductivity

In order to establish an electric current in a circuit, a difference in potential
is required. It was G. S. Ohm (1787 - 1854) who ectablished experimentally thsat the
current in a metal wire is proportional to the potentisl difference V epplied to its

ends
\')

I = —

R ]
where R is called the resistance of the wire. This relation is often written as
V = IR {15-16)
and is referred to as a Chm’'s law, which states that current through a metal conductor
is proportional to the applied voltage. That is R is constant and independent on V for

metal conductors. However this relation does not apply generally for other substances
and devices such as transistors, vacuum tubes etc. Such materials or devices are said

to be nonohmic.
The unit for resistance is called the ohm and is abbreviated (2 \Greek capital

omega).
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All electric devices offer resistance to the flow of current. In many circuits,
particulary in electronic devices, the resistors are used to control the amount of
current.

It was found experimentally that the resistance R of a uniform metal wire is
directly proportional to its length £ and inversely proportional to the cross-
-sectional area & , that is

R = o2, (15-17)

where ¢ is called the resistivity and depends on the material used.

The resistivity depends somewhat on purity, heat treatment, temperature and
other factors. Silver hae the lowest resistivity, but it is expensive. Copper is
not fer behind so it is clear why the most wires are made of copper.

As it was already said the resistivity of a material depends on temperature. In
general, the resistance of metale increases with temperature, that is

op = ¢ [1+w@- )], (15-18)

where ¢{n is the resistivity at temperature T, ¢, is the known resistivity at a
standard temperature To, and & is the temperature coefficient of resistivity. Note
that for semiconductors the coefficient of can be negative.

At low temperatures, the resistivity of certain metals and their compounds or
alloys becomes essentially zero. Materials in such & state are said to be super-
conducting. This phenomenon was first observed by H. K. Onnes in 1911 when he
cooled mercury below 4,2 K. He found that at this temperature the resistance of
mercury suddenly dropped to zero. In early 1987, a compound of yttrium, barium,cop-
per and oxygen was developed that can be superconducting even above the temperature
of liquid nitrogen 77 K. Rapid progress quickly produced materials that superconduct
at even higher temperatures.

The reciprocal of the resistivity ie called the conductivity G, that is

G = —. (15-19)

The conductivity has units of \Il.m)_l.

) Ohm’s law cen be written in terms of microscopic quentities as follows. The
potentisl difference V applied between the ends of the wire is

Vv = EL, (15-20)

where £ is the length of the wire. We suppose that the electric field E within the
wire is uniform. The potentiel difference V is also given by Ohmw’s law (Eq. 15-16),
thus we have

EZ = 1IR. \15-21)

Substituting into this equation for resistance Eq. 15-17 and for current (see Eq.
15-5) I = jS we have

EL = j5¢é.
Thus we obtain
j = =B (15-22)
¢
or
j =GE. 15-23)

Eq. 15-22 and Eq. 15-23 can be written in vector form as
j = GE = E}‘-E (15-24)
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This expression is a microscopic statement of Ohm’ s law.

Let us now determine the conductivity G from a microscopic point of view. When
a homogeneous electric field is applied to the electrons in metal it will experience
a force (-e E) on each of theum. We suppose the initial velocity of electrons equal
to zero, so that we can write

dt
or -
v = -eE% .
v = = t . {15-25)

We can see that the velocity of each electron is increased from zero to Y oax
during the time interval t . Thie time interval represents mean time between two
succeeding collisions. The average velocity, therefore,is

v
7 - -mex
2
Thus we obtain

T = -1 &E 7 5
Vo= -3 &2 1. (15-26)

From the expression for current density, see Eq. (15-9), we obtain

v = =, (15-27)

S E EEE E
en 2 m
or
1 e2n‘€ )
J = 3 = E . (15-28
If we compare Eq. (15-28, and Eq. (15-23) we can see
2 —
G = &nt (15-29)
2m

Equation (15-29) can be taken as & statement that metals obey Ohm’s law if we
can show that t does not depend on the applied electric field E. In this case &
will not depend on E. The quantity t depends on the speed distribution of the
conduction electrons which is affected only very slightly by the application of even
a relatively large electric field. Thus until very strong electric fields
['\’108 V.m—l] materials obey Ohm s law.

15 -3 Electromotive Force

The steaay flow of current requires naturally some source of energy capable of
meintaining the electric field that drives the charge carriers. There are certsin-
devices such ac batteries and electric generators which are able to maintain a
potential difference between two points to which they sre attached. We call such
devices seats of electromotive force (symbol £, abbr. emf ). The origin of the
emf in a direct-current circuit ie some mechanism that trangports charge carriers in
& direction opposite to that in which the electric fields is trying to move them.

We can represent the effect of this mechanism by a certain electric field E.

Imegine we have a simple electric circuit & containing a seat of emf (see Fig.
15-5).
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FTTTTTTTTs : The flow of charges in this electric circuit can

K+ -'L be therefore Gescribed by the Ohm e law, that is

= — - -

j =G.E = G&Eg+ED, 15-30)
where ﬁé is the electric field which causes the flow
of charges outside the seat of emf that is in that part
of the circuit which ie described as m. This electric
field corresponds to the potential difference between
the terminals K and L.

Let us divide Eq. (15-30) by G, then mulgiply it
by an oriented element of the circuit length dZ eand

Figure 15-5 finelly to integrate it over all closed circuit. Thus
we obtain

—_— - — —_—
ar = 35 {(E. + E*) a¢ . {15-31)

S
(m+n) (m+n)

c)lw

The integral on the right side can be divided in two parts that is integral
over the path m outside the seat of emf and the integral over the path n insice
the seat of emf (see Fig. 15-5). Notice, however, that in the part n of the 1ntegr-
ation path the motion of charges is influenced not only by the electric field E*
but also by the electric field Es. Thus the motion of charges inside the seat of emf
isg determined by the electrlc field - \Es *). On the contrary outside the seat of
emf the electric field E* equals to zero.

We can write right side of Eq. (15-31) as

- = - —;_ —_ b i — — N — — -
E.d¢ = 4 (ES +E7) d¢ = J (Es + E¥) az + J (Eq + E*) a2z =
(m+n) {m+n) K L
L K K K
E.dZ + | B 5} + [E* 5} = j E..Q¢ + j ER d} 15-32)
s 5 I a2 = - .de . 15-3
L L (m+n) L

Integral qi s .af equals to zero as a result of validity of conservation of

St
[l N‘——s

(m+n
energy law (see Eq. 14-35).

The integral
K

[&.a =¢ (15-33)
L

is referred to as an electromotive force. Electromotive force may be defined as the
work per unit charge passing through the seat of enmf.

Similary let us now separate left side of Eq.(15-31) in two parts
i = i =, i =
(PG‘ at =f?d +j€ az . (15-34)
m+n K L

Let us imagigi a steady current through a homogeneous conductor. In this case
vectors j and d{ are colinear. We can also write

J = —= and R = 5

0
Q
n

where ./ is the length of conductor between points K and L. Thus we obtain
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L _ L L

o _ [ _ I 2
J4a = [Lar-Efar =1L - 1R, (15-35)
K K K -
For the second integral in Eq. (15-34) we can write similary
K -
[+ & -
G = s {15-36)

where Ri is called internal resistance.

Substituting Eq. (15-33, Eq. (15-35),BEq. \15-36) into (Eq. 15-31) we obtain
&€= IR+ Ri) . \15-37)

This equation represents Ohm s law rewritten for a closed circuit.
The internal resistance can be represented as

R; € if it were in series with emf, as shown in Fig.
o +—f——e ¥
a + b The two points a and b in the diagram repre-
sent the two terminals of the seat of emf for
Figure 15-6 example battery. What we measure is the terminal

voltage vab' When no current is drawn from the bat-
tery the terminal voltage equales the emf. However, when a current I flows from the
battery, there is a drop in voltage egual to IRi. Thus the terminal voltage is

Voo = & - IRy -« (15-38)

For example if 12 V battery has an internal resistance of 0,1 , then when
10 4 flowe from the battery, the terminal voltage is 11 V.

As an example of the presented results we
shall obtain Kirchhoff s seconé rule or so called
loop theorem. Imagine closed electric circuit
which consists from Junctions 4, B, C, I, E and
branches connecting these Jjunctions,see Fig.1l5-7.

Each branch mey contein & resistence R and
an electromotive force & .

4 convenient starting point is Eq. (15-32)
which we can rewrite for the presented electric

A circuit as
83 — - — - — —
D R la é\\ E.d¢ = QE..cL + giE*'dZ {15-39)
4 ¥ — —
or with respect to the fact that @Es.cz = 0 we
Figure 15-7 have Y -
L.ct = PE*.cr . {15-40)

Wwe can write the integrals on both sides of Eq. (15-40, as & sun of integrals

along different branches of the closed circuit so that we have

= c A
jbi’.&? = Jf.c;"} + Jf.d—i boaee + fﬁ.?, (15-41)
A B
B c s
Sﬁﬁ.éf = fﬁ*.d? + f:_:‘; + o +fE*.d . (15-42)
A B

The integrals on the right side of Eq. (15-41J equal to the products of resist-
ances and currents in different brsnches so that we have
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F.2 = RI I .= 5
$E.ak = BRI + R, + e ¥ ReIy = g BTy \15-43)

The integrals on the right side of Eq. (15-42) equal to the electromotive for-
ces in different branches so that we have

— n
qSE*.dz = rEy e v E, = Elak. \15-44)

Substituting Eq. (15-43) and Eq. (15-44) in Eq. (15-40) we have

n n
2. & = 531 R Iy

k=1

or n n
> &, -2, RI =0 (15-45)
b St S s TR ’

where n is number of brenches. Eq. (15-45) is a mathematical statement of the
Kirchhoff s second rule: the algebraic sum of the changes in potential around any
closed path of the circuit must be zero. Note thet this rule is based on the

conservation of energy law.

Kirchhoff's first and second rules are used together to find for example cur-
rents when the emf and the resistances in multiloop circuits are given.

15-4 Energy Transfers in an Electr ie Circuit

Electric energy is useful to us because it can be easily transformed into other
forms of energy.

Figure 15-8 shows & circuit consisting of a battery B connected to a "black
box". A steady current 1 exists in the connecting wires,a
! steady potentisl difference V exists between the terminals

a and b. The box might contain a resistor, a motor or &

b1 storasge battery among other things.
a

- B zb To find the energy transformed by such a "black box"
we use the fact that the energy dU transformed when &n
infinitesimal charge dq moves through a potential dif-
ference V (see Egs.(14-37) and (14-38)) is
du = aq Vv . {15-46)

Figure 15-8
If dt is the time required for an amount of charge

dq to move through V, the power P, which is the rate of energy transformed is

p = & - WSy, (15-47)
dat dat
The cherge that flows per seconc is simply the current. Thus we have
P = IV. (15-48)

This is a general relation which gives us the instanteneous power of any device,
where I is the current passing through it and V is the potential difference across
it. .

The rate of energy transformation in a resistance R can be written, by combining
Eq. i15-48) and Eq, (15-16) as

2
P = I(UR) = I°R = (—%—)v = -‘é—. (15-49)
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Equation (15-49) is known as Joule s lew. Note that Eq. (15-48) applies to
electrical energy transfers of all kinds and Eq. (15-49) applies only to the trans-
fer of electrical energy to thermal energy in a resistor.

The SI unit of electric power is the same as for any kind of power, namely the

1w=l_J.
ls

Let us now obtain Joule s law from a microscopic point of view. Imagine we

watt

have a conductor, see Fig. 15-9, which is connected to a battery. The electric field

> T acts on the charge carriers so that these charges
________aF will travel with a constant drift speed ¥V . The
electric potential energy that they lose is trans-
d{+ s formed to the resistor as thermal energy. On &

.‘f—-—>v ' microscopic scale we can understand this in that
dQ collisions between the charge carriers and the lat-

tice increase the smplitude of the thermal vibra-
tions of the lattice. On the macroscopic scale this

Figure 15-9

corresponds to a temperature increase.

In this conductor we choose sn elementary volume AV which has & cross section
dS and the length df. We define power density as

p = £, ({15-50)
av

4$he power P can be expressed as P = F.V (cee Eq. 4-5). As far ac the force F =
= Q.E we can write
p = £ FV) = L IV . (15-51)
av av

= . - = .
We consider a stationary case, that is vectors E and V are constant in volume
in question. So we have

p = Ev
av
where ¢y is the volume charge density (@, = en).

E.V ey > _ (15-52)

Equation (15-9) states that 3 = en.v , €0 we can write Eq. (15-52) as

— —

p = L.e.n.v = E.j. (15-53)

This equation is a methematical statement of the Joule e law from the micro-
scopic point o view. '
The SI unit of power density is WS (cee Eq. 15-50).

From Eq. (15-47/ it is possible to determine the total energy & used by any
device during a time t as

t
I = fP at [J] (15-54)
o]

15 -5 Conduction of Electricity in Gases

In their normal state gases are electrical insulators. This is due to the fact
that they contain no free charged particles but only neutral atoms or molecules. If,
however, electric fields of sufficient intensity are applied to them they become
conductive and the complex phenomena which then occur are called gas discharges;they

are Gue to the mppesrance of free electrons and ions.
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The result of a gas discharge is therefore to produce an ionized gas. Probably
the most important reaction of a gas discharge is ionization. When an electric field
is placed across a gas, the electrons that may be in the gas volume are accelerated
by that field. These electrons are continually colliding with the neutral gas atoms.
After many such collisions, the electric field will have accelerated some of these
electrons to energies greater than so called ionization potential. This potential
corresponds to the energy when the collision between the energetic electron and the

neutral atom can cause sn electron to be ejected from the atom. Thie will create &
positive ion and a new free electron. This proces is called the ionization.

The reversible process which occure when a positive ion collides with the
electron so that the neutral atom is obtained is called recombination.

The neutral gas can be also ionized by a high temperature \thermal ionization),
high pressure, by irradiation with X-rays etc. The most important role in practice

Zgmamre—

plays, however, the ionization in en electric field, so we chell discuss gas
discharges. }

Gae discharges can take place over a very wide range of gas pressure and Carry
currents ranging from scarcely measurable values to 107 A and more. They may be
steady state processes or transient or very short duration. The behaviour of a gas
discharge ie in general influenced by the properties of the electrical circuit of
which it forms a part.

Consider a cylindrical glass tube
R with two plane electrodes at its ends
filled with a gas at low pressure
(about 10° Pa). A d.c. potential is ap-
\ plied aross the electrodes from a source
G in eseries with a varisble resistor to
control the current flowing through the
circuit, see Fig. 15-10.

As the potential V across the elect-
rodes is increased very slowly we observe
first very small currents occuring in
rendom bursts. A somewhat larger steady
current would be observed if the cathode
were illuminated with ultra violet light,
Figure 15-10 the current becoming larger with increased
intensity of illumination. Removal of the

Inl

light causes the current to revert to random bursts. This is shown in Fig. 15-1C,
region AB.

If now the potential V is further increased, the current begins to increase
; rapidly. The current is determined by the resistance R in the circuit and does not
| change if the light shining on the cathode is removed: it is independent of any
external source of ionization and this state of affairs constitutes a self sustained
discharges. The discharges of this kind are usually called Townsend or Dark
discharges \region BC, Fig. 15-10).

If the current is allowed to increase further the discharge becomes faintly
visible with light and dark spaces arranged along the tube in a characteristic man-
ner and the potentisl across the electrodes drops congiderably, until it reaches &
constant velue. This region is shown as CDE in Fig. 15-10 and & glow discherge is
said to have been established.
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If the current is allowed to increase further the voltage remains constant even
when the current varies over 2 or 3 orders to magnitude. This ig & region of a normal
glow discharge (region EF in Fig. 15-10). If the current ie still further increased
the potential across the discharge rises considerably: this is an abnormal discharge
\region FG, in Fig. 15-10). Still further increase in current causec the potential
to riese to a maximum and at large currents to fall to a very low value. We have then
an arc discharge. Here becomes important notably heating of the gas.

There are, however, other types of discherges which take place in stmosferic
pressure. First of all there is s coronsa discharge which takes place in a non-uniform
electric field. The breakdown voltage of such a discharge strongly dependes on the
geometry of the electrodes and their polarity. The corona cischarge is of particular
importance in high-voltage engineering where non-uniform fields are unavoidable.

Transient discharges, or sparks, cen occur over a wide range of current and pres-
sure. If they are initiated, as is usual, by breakdown, then the discharge will last
for a time which depends on the source of energy. a.c. discharges at low frequencies
may be classified much as the d.c. cases, but increasing frequency changes the
behaviour radically and distinction becomes less clear.

The existence of gas discharges in nature is familiar through lightning and
through the Aurora Borealis which occurs in outer atmosphere at very low pressure.

The result of a gas diechaerge is to produce sn ionized gas containing, for
instance, n, electrons, n; positive ions and n, neutral molecules per m3. Such an
ionized gas is called plasma. From & strictly scientific standpoint, however, plasmas
form an extremely interesting field of study. It has often been said that plasma
constitutes the fourth state of matter. The interactions among its constituents are
due to the long range of Coulomb forces.

The results of plasma physics are used in a great number of application. Let us
mention the following - illumination by sodium lemps, noise generators for radio-
electrical measurements, plasma technologies, plasma displays, plasma jets; ionic
rocket propulsion, re-entry of rockets into the earth’s atmosphere etc. However, the
most important goal which waites for the solution by the plasma physicists is the
harnessing of nuclear fusion energy.

15-6 Conduction of Electricit Yy in Liguids

In 1833, Michel Faraday observed that pure water was almost a perfect insulator,
whereas aqueous solutions of certain substances were electrically conducting. If two
electrodes of some metal such as platinum are dipped into a distilled water, snd one
electrode is connected to the positive terminal of a d.c. source, the other to the
negative, preactically no current is observed.

However a emall amount of, for example, sodium chloride (NaCl) when dissolved in
the water, provides a solution whose resistance is sufficiently low for the current
to be sppearable. The resistance of the solution depends markedly on the concentra-
tion and upon the temperature.

4 solution which conducts an electric current is called an electrolyte. The
conduction phenomenon which is attended by secondasry chemical effects ie called
electrolysis. The vessel which holds the electrolyte and the electrodes is called
an electrolytic cell. The most striking effects that accompany electrolysis are the
chemical reactions that take place at the electrodes. Thus, with pletinum electrodes
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in dilute sulfuric acid, hydrogen is formed and liberated as bubbles of gas at the
negative electrode, whereas oxygen is formed and liberated as bubbles of gas at the
positive electrode. These gases may be collected, dried and weighed, and the first
quantitative measurements mede by Faraday consisted in noting the substances that
formed at both electrodes and measuring their respective masses, after a known cur-
rent had existed for & known time.

Imagine three electrolytic celle, all equipped with platinum electrodes (to

avoid complications that might result if the electrodes themselves were chemically
active) but with different aqueous solutions as electrolytes, as shown in Fig.15-11.

O

Figure 15- 11

Connecting these cells in series ensures that the current is the same in all
cells. Experiment shows that silver is deposited on the negative electrode of the
left-hand cell, copper on the negative electrode of the middle cell, and antimony on
the negative electrode of the right-hand cell.

Let us suppose that a current has been maintained for such & time that the
electric charge 96 519C has been transferred through each cell. When the three
electrodes are removed and the mass of material on each is weighted the following
results are obtained:

Silver : 108 g = l%é g
Copper : 31,8 g = é%*é g
Antimony: 40,78 = l%g

These fractions have a simple interpretation. The numerators are the atomic
weights of the respective elements, and the denominators are their respective
valences. 4 mass equal to the astomic weight divided by the valence is called an
equivalent weight. The electric charge 96 510 is called one faraday, F. Faradays
law of electrolysis is therefore: the number of gram-equivalent weights of a sub-
stance deposited, liberated, dissolved, or reacted at an electrode is equal to the
number of faradays of electricity transferred through the electrolyte.

If a current 1 is maintained for a time t , then the number of faradays of
electricity transferred is



If 2 mass m of a substance of atomic weight M and of valence j§ is deposited,
then the number of gram-equivalents is

n_j
T
Faraday s law may therefore be written as
g.—-li — I-t -
T 7o (15-55)

The electrolysis is widely used in practice for example for refining of metals,
in galvanic cells etc.

l6. MAGNETIC FIELD

The science of magnetism grew from the observation that certain "stones"
\magnetit) would attract bits of iron. The word magnetism comee from the district
of Magnesia in igia Minor, which is one of the places at which the stones were found.
Todey it is clear that magnetism and electricity are closely related. This relation
was not discovered, however, untill 1820 when H. Ch. QOersted discovered that a cur-
rent in a wire can also produce magnetic effecte, namely that it can change the
orientation of a compass needle. 4 compass needle placed near & straight section of
current - carrying wire align itself so it is tangent to a circle drawn around the
wire. Oersted had therefore found a connection between electricity - that is between
movement of charges and magnetisam.

16 -1 Magnetic Field, Definition of B

We define the space around a magnet or a current - carrying conductor as the
site of a megnetic field, just as we defined the space near a charged rod as the
site of an electric field.

Let ue cdefine the basic magnetic field vector 3, which ies called the magnetic
induction. For this let us place the test charge ¢ in the electric and magnetic
field. The force on this electric cherge depends not only where it is, but also on
how fast it is moving. Lvery point in space is characterized by two vector quanti-
ties which determine the force on any charge. First, there is the electric force
which gives a force component indepencdent of the motion of the charge.

g We describe it by the electric field E. Second, there is an
additional force component, called the magnetic force, which
depends on the velocity of the charge. This magnetic force has a

90° o strange directionsl character: at every instant the force is
always at right angles to the velocity vector (see Fig. 16-1).
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It is possible to describe all of thie behaviour by cefining

g .
magnetic induction vector B, which specifiec both the unique
direction in space and the constant of proportionali}y with the
velocity, and to write the magnetic force as q(€.x B). The total

my

electromagnetic force on a charge can be written as

Figure 16 - 1 F = qE +V xB) . (16-1)
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