If @ macss m of & substance of atomic weight M and of valence J 1is deposited,
then the number of gram-equivalents is

m_j
T
Faraday ‘s law may therefore be written as
mj . 1t =
m - (15-55)

The electrolysis is widely used in practice for example for refining of metals,
in galvanic cells etec.

l6. MAGNETIC FIELD

The science of magnetism grew from the observation that certsin "stones"
imagnetit) would attract bits of iron. The word magnetism comes from the district
of Magnesia in isia Minor, which ie one of the places at which the stones were found.
Today it is clear that magnetism and electricity are closely related. This relation
was not discovered, however, untill 1820 when H. Ch. QOersted discovered that a cur-
rent in a wire can also produce magnetic effecte, namely that it can change the
orientation of a compass needle. 4 compass needle placed near a straight section of
current - carrying wire align itself so it is tangent to a circle drawn around the
wire. Oersted had therefore found & connection between electricity - that ie between
movement of charges and magnetism.

16 -1 Magnetic Field, Lefinition of B

We define the space around a magnet or a current - carrying conductor as the
site of a magnetic field, just as we defined the space near a charged rodé as the

site of an electric field.

Let us cefine the basic magnetic field vector 3, which ie called the magnetic
induction. For this let us place the test charge ¢ in the electric and megnetic
field. The force on this electric charge depends not only where it is, but also on
how fast it is moving. Every point in space is characterized oy two vector quanti-
ties which determine the force on any charge. Firet, there is the electric force
which gives a force component independent of the motion of the charge.

We describe it by the electric field E. Second, there is an
additional force component, called the magnetic force, which
depends on the velocity of the charge. This magnetic force has a

8

00° o strange directional character: at every instant the force is
always at right angles to the velocity vector (see Fig. 16-1).

<y

90°
It is possible to describe all of this behaviour by cefining

= .
magnetic induction vector B, which specifies both the unique
direction in space and the constant of proportionality with the
velocity, and to write the magnetic force as q(?_n B). The total

==y

my

electromagnetic force on & charge can be written as

Figure 16-1 F o= q(ﬁ +Vv xB) . (16-1)
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This is called the Lorentz force.

The fact that the magnetic force is always at right angles to the direction of
motion means that the work done by this force on the particle is zero. Thus a static
magnetic field cannot change the kinetic energy of a moving charge; it can only
deflect it sideways.

The ugit of B that follows from Eq. (16-1) is given the SI name tesla (abbr. T)
or weber,/m“ (abbr. Wb/mz). Recalling that a coulomb/second is an ampere we have

_ L1LWb _ 1N
lT-——z———.
m Am

An earlier unit for B, still in common use is the gauss, the relationship is 1 T =
= 104 gauss.

16 -2. Lines of Induction, Magnetic F1lux

Just as we represented the electric field by lines of force we can represent
magnetic field by lines of induction. The megnetic induction vector is related to
the lines of induction in this way:

1. The tangent to & line of induction at any point gives the direction of g'at
that point.

2. The lines of induction are drawn so that the number of lines per unit croes-
-sectional srea (perpendicular to the lines) is proportional to the magnitude
of B. Where the lines are close together B is large and where they are far
apart B is small.

For the magnetic field, the magnetic induction vector B is of fundamental
importance; the lines of induction simply giving & grephic representation of the way
o
B varies throughout a certain region of space.

There is however & great difference between lines of force which represent the
electric field and lines of induction. There is no magnetic analog of en electric
charge, that is there are no magnetic charges from which lines of B can emerge. If
we think in terms of lines of induction they cen never start and they never stop.
Since these lines do not begin or end, they will close back on themselves, making
closed loops. But they will never diverge from points. No magnetic charge have ever
been discovered.

The above mentioned fact can be used to obtain so called Gauss's law of
magnetism. For this let us define the flux <DB for a magnetic field in exact analogy
with the flux for the electric field (see Section 14-5), neamely

-
@B = f B.ds (16-2)
in which the integral is taken over the surface (closed or open) for which <bB is

defined. The SI unit of ‘DB is weber (abbr. Wb).

Let us determine the flux ¢B through a closed surface S which is immersed in

a magnetic field (see Fig. 15-2).

As far as the induction lines make closed loops then the number of lines enter-
ing the closed surface equals to the number of lines leaving the surface. Thus the
magnetic flux through a closed surface equals to zero, or
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d -t —
B Sf}( B.dS = 0. (16-3)
Dy <
S This equation which is called Gauss’s
law of magnetism is one of the basic equa-
tions not only for megnetostatics but even
for dynamic fields.
16 -3 Magnetiec Force on
& Current
Figure 16 -2

A current is an assembly of moving -
charges.Because a magnetic field exerts a sideways force
v ‘on a moving charge, we expect that it will also exert a
_— sideways force on & wire carrying a current. Figure 16-3
) chows a differential element of a wire of length lazl
(: <;:> carrying a steady current_z and placed in a magnetic

E::A_#_ﬁ_,_ﬁ_ﬂ_.__J field B only. The vector & points in the direction of

1dtl positive current flow.

The magnetic force acting on a differential length
Figure 16 -3 df of the wire carn be obtained directly from definition
of B in Eq. 16-1) which we can rewrite for the force on
a charge element &G which is moving with velocity vV in a magnetic field B as

aF = 4aQv x B) . \16-4)

From the ggfinition of current in terms of charge transport we know that dQ = I 4t

and ¥ = &£ | Thus we can write

@F = Iat& 3B
dt
or )
— - -
dF = I(dL = B) . (16-5)
Equation (16-5) expresses the force which magnetic field exerts on a differen-
tial length df of the concuctor carrying a steady current 1. By integrating this
- . . o= . -
formula in an appropriate way we can find the force F on a conductor which is not

straight: .
F = j[(d[ x B) . (16-6)
)2

16-4 Torgque on a Current Loop, Magnetic

Dipole iWoment

Let us consider now the rectangular loop of wire see Fig. 16-4 of height h
and width £ placed in a uniform magnetic field 3. The loop, which carries & current
I is suspended so that it is free to rotate about the axis x - x .

The orientation of the loop with respect to the magnetic induction B is given
by the engle o between B and unit vector ﬁ; of the normal to the loop. The orient-
ation of vector.ﬁ; is given by the right-hand rule (cup your right-hand so that your

fingers wrap around the loop in the direction of current flow, then your thumb pointe
in the direction of ).
The net force on the loop is the resultant of the forces on the four sides of

the loop. The magnetic force on each side can be determined from Egq. (46-5). Note
that the orientation of vector df{ is the same as the orientation of current.
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Top view

Side view

L,

a) b)
Figure 16-4

Using the Eq. (46-5) we can see that the magnetic forces on the loops arms
{sides 1 - 2 and 3 - 4) are of equal magnitudes and in opposite directions, hence
they cancel and produce no net force. As far as they have the same line of action
the net torque due to these forces is also zero.

5 The common magnitude of forces F and F. is

: F4 17 F2 3 = IhB : (16—7)‘

‘ b g .

' since these sections are perpendicular to B. The direction of F and F is ghown

4,1 2,3
in Fig. 16-4b. These forces do not act along the same line, hencé can proéuce a

torque. This torque is equal

— — -
T, = 4 xF,
where |Fi=IF, .| = |F, .l = IhB. Magnitude of the torque is
4,1 2,3
Ty =4 F sino = £UIhB) sin ¢ = I(£L h)B sin x = ISB sin o , (16-8)

where S = £h 1is area of the loop shown in Fige 16~4. This formula derived here
for a rectahgular loop is valid for any shape of the flat loop. The quantity:

((—Z = IS 1_1; (16‘9)

is called the magnetic dipole moment of the loop. With this definition oféz we can
| rewrite Eq. (16-8) in vector form

Ty = &~ B (16-10)

| which gives the magnitude and direction for <T_.

=]

Since a torque acts on & current loop, or other magnetic dipole, when it is
placed in en external magnetic field, it follows that work (positive or negative)
must be done by an external agent to change the orientation of such a dipole. Thus
a magnetic dipole has potential energy associated with its orientation in an

external magnetic field.

We can assume that the magnetic energy W is zero when gZ and B are at right
angles, that is, when & = 90°. This choice of a zero - energy configuration for W
is arbitrary because we are interested only in the changes in energy that occur
when the dipole is rotated.

The megnetic potential energy in any position o is defined as the work that
an external asgent must do to turn the dipole from its zero-energy position (X = 90°)

to the given position . ‘Thus
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&
4

o
U=WwW-= .[on dx = jo ISB sino do =HB]o sin¥ do = - M B cosw
90 90 90
in which Iq. (16~8) is used to substitute for gi. In vector symbolism we can write
this relation as
Uy = = H'B s \16-11)

Thic relation is an equivalent of expression for the energy of an electric
dipole in an external electric field (see Eq. 14-23).

The torque produced by the magnetic force on the current is the basic principle
behind a number of important practical devices, including motors and meters.

16 -5 Hoving Electric Charge 1in
Field

Magnetic

[++]
E

Let us imagine a positively charged particle @ introduced at time t = O with

velocity v. into a uniform magnetic field Bat x

a =2z =0, see Fig. 16-5.

=Y
(o] o] (o] >
We assume that ?; is at right angles to B and thus
§ Aies entirely in the plane of the figure that is in

<:) the plane x - y.

Let us analyze motion of the particle and let
ue determine the equation of the trajectory of the
X perticle.

9]
<¥

The initial conditions could be written as
R followe:

t=0 Xy = ¥y = 2, = O

o o

Vo T Volvoys 0, 0)
Magnetic induction vector has the components

Figure 16 -5 B = B0 8 B

From Eq. (16-1) we can obtain the expression

for a force which exerts the magnetic field on sn object of charge Q as
F = v 3. (16-12)

From the Newton & second law we have

[o7]
e B!

Q¥ x3) = m , ' (16-13)

%J

where the position vector T haes the components x and y.
Let us write the single vector Eq. (16-13) as the two scelars equations, that

is :
s 2 g
d™x M
m =Qgv. 3=Q—21B (16-14)
at2 y at
2
d dx :
—¥=-—‘v B=z~-Q=23. (16-15)
mdt e X dt

After integration of Egs. (16-14) and (16-15) with respect to initial

conditions we have

v, = I%y B+v (16-16)

b4 ox ’
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v = -3%xB. (16-17)

Integrating Eqs. (16-16) and (16-17) we obtain the components of the position
vector as

x = §th Vet (16-18)
y = - & xBt . (16-19)

Eliminating t we obtain equation of the trajectory of the particle in a
magnetic field., For this we use the equation
2 2 2

v svlzy (16-20)
X y
Substituting Eqs. (16-16) and (16-17) into Eq. (16-20) we have after some
rearrangement :
2 2
mv ov
X2 + <y + °x> = <ﬁ> 16-21)
QB QB

for the trajectory of the charged particle in a magnetic field. It is obvious that
Eq. (16-21) is the equation of a circle with a radius

R = 9oz . (16"22)
QB
Thus the path of the positively cherged particle Q which is introduced per-
pendiculary into the magnetic field is a circle with the coordinates of its center
of rotation (see Eq. 16-21)

x, = 0,
mv
Yo = - —0ox
QB

The time T required for a particle of a charge Q to meke one circular revolu-

"tion in & uniform magnetic field B is

(16-23)

where 2 TR is the circumference of its circular path. For the frequency of rotation
we can, with respect to Eq. (16-22), obtein

£ = % = 9B (16-24)

2Tm

This is often called the cycloctron frequency of a particle. Note that this
frequency does not depend on the speed of the particle. The cycloctron frequency is
a characteristic frequency for a charged particle in the magnetic field and may be
compared for example to the cheracteristic frequency of an oscillating mass-spring
system.

The influence of magnetic field on the motion of charged particles is used for
example in cycloctrons, synchrotrons, for deflection of electrons beams ete.

,

16 -6 Ampere s Leaw

One cless of problems involving magnetic fields, dealt with in preceding
sections, concerns the forces exerted by a megnetic field on a moving charge or on
a current-carrying conductor and the torque exerted on a magnetic dipole. & second
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class of problems concerns the production of a magnetic field by & current-carrying
conductor. This section deals with problems of this second class.

We will now discuss how magnetic induction is determined for simple situation
that is for a long straight wire carrying the current.

Imagine a wire surrounded by a number of small compeass

& - W - heedles. If there is non current in the wire, sll compass needles
" ‘. are aligned with the horizontal component of the earth’s magnetic
0 . . field. Where a strong current I is present the needles Point s0
as to suggest that the lines of induction form closed circles
\ ’ around the wire (see Fig. 16-6).
) - ~ We might expect that the magnetic induction at a given point
would be greater if the current flowing in the wire were greater,
Figure 16-6 and the field would be less at pointe further from the wire.

Careful experiments show that the magnetic induction B at a
point near the wire is directly proportional to the current I in the wire and
inversely proportional to the distance r from the wire:

I

B = .

o

We can convert this proportionality into an equality by inserting proportion-
ality constant. We do not write this constant simply as, say, K but in a more
complex form, namely #o/2 T in which My is called the permeability of free space
ana its velue is

& = 411077 HaL,

The constent is chosen like this so that ampere s law, which we shall see, has
a simple and elegant form. Thus we can write the relation between the current in a
long straight wire and a magnetic incuction as

(“oI
27>

B = (16-25)
Thie equation is valid for a long straight wire only. The following question

arises: is there a general relation between a current in & wire of any shape and

the magnetic field around it% The answer on this question found A. M. Ampere.

Consider eny arbitrary closed path
around 2 straight conductor carrying a cur-

i >
B
rent I as shown in Fig. 16-7. Let us now try
o to determine the magnitude of the line
/ integral Q B.¢f around a closed path £ ’
—
LY/ dl where df is an infinitesimel length vector.
From Fig. 16-7 we can see:
d cosy = rdy.
. - —» .
Figure 16 -7 The dot product B.d/f is:
B.dd = Bdlfcosx = Brdy.

As far as the magnetic induction at & distance r from & current carrying streight
- —

wire is given by Eq.(16-25) we can insert this induction into the qSB.dZ and

integrate it over the whole closed path. Thus we have:
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> — I
éB.d = QSBr dy = o rdy = éA,OI
271r
(o]
or
-5
¢B.al = w4l . (16-26)

This equation is known as Ampere e law. To determine the direction of magnetic
induction near a wire cerrying & current it is possible to use a right hand rule.

Practical value of Ampere s lew as a mean to calculate the magnetic field is
limited to simple cases. Its real importance lies in the fact that it relates a
magnetic field to the current in a direct way. This law is thus considered one of
the basic lawe of electricity and magnetism.

16 -7 Biot - Savart Law

We can use Ampére s law to calculate magnetic fields only if the symmetry of
the current distribution is high enough to permit the easy evaluation of the line
integral 4;§.dz: This requirement limits the usefulness of the law in practical
problems. The law does not fail, it simply becomes difficult to apply in a useful
way. This is much like the electric case, where Gauss s law is also considered
fundemental but is limited in its use for actually calculating E ; so we must often
determine the electric field E by summing over contributions due to infinitesimal
charge elements via Coulomb s law. A magnetic equivelent to this infinitesimal form
of Coulomb’s law is Biot - Savart law.

According to Biot and Sevart, a cur-
rent I flowing in any path can be
considered as many infinitesimal current
elements, such as in the wire of Fig.
16-8.

If &k represents any infinitesimal
length along which the current is flowing,
then the magnetic induction a8 at any
point in space due to this element of

. current is given by
Figure 16-8 =

x
a8 = —= ———2——° (16-27)
4 T r

where 5; is the unit vector pointing from the element d£ to the given point.

Equation (16-27) is known as the Biot - Savart law. The magnitude of 4B is
be df gin o

B = 5 , (16-28)
4T

where © is the angle between 3/ and T . The total magnetic induction at given
point is then found by integrating over all current elemente

5 = [dB, (16-29)
where the integral is & vector integral.

The Biot - Savart law is the magnetic equivalent of Coulomb s lew in its
infinitesimal form.
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\ l6 -8 Applicetione of Ampere’'s and Bij ot - Sa-
vart Laws

In this section we show how to use Ampere ‘s and Biot - Savart law for the
simplest example that is for a long straight wire carrying the current I.

Example 1 : Derive an expression for B at a distance R from the center of a
long cylindricel wire. The wire carries & current I. For the solution use Ampere s
law, .

Solution: We know from the Section 16-6 that the lines of induction around the
straight wire carrying a current are circles with the wire at their center. So
to apply Eq. (16-26) we choose as our path of integration a circle of radius R.
We choose this path because at any point on this path, B will be tangent to this
circle. Thus for any chort element of the circle, B will
be parallel to that segment, see Fig. 16-9.

The central dot in this figure suggests a current I
in the wire emerging from the page. Note that the angle
between B and d¢ is zero so that B df = 3 a4 .

So we have

f | | - —
- ,‘ 4B.de=c§5cu=agfdz=82xR= sl .
‘\ A We solve for B and obtain
\\\‘»__—”,’ I
B = Lo
2R

Figure 16-9

Example 2 : Derive an expression for 3 at a distance r from the center of

8 long cylindrical wire which carries a current I. For the solution use Biot -
- Savart law.

Solution: Figure 16-10, a side view of the wire, shows a typical current element
oriented by the infinitesimal vector az .
The magnitude of the contribution dB at point P of this element is found
from Eq. (16-28), or
4B = be das .12 ] .
4T r

e The directions of the contributions dB at

point P for all elements are the same, namely,
into the plane of the figure at right angles

R &B to the page. Thus the vector integral of Eq.
{16-29) reduces to a scalar integral, or
I X=+00
B = de . M f ein g ar
47 r
X==00
(16-30)
e Now 4, ©@ and r are not independent,being
related (see Fig. 16-10) by
Figure 16-10
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r = . \16-31)
egin ©
and
A= - R cotg ® .
Thus we have
dt = —E e . (16-32)
sin ©

Substituting Eqs. (16-31) and (16-32) into Eq. 16-30) we have

17 I
p = o Jsinede - Lo,
4TR g 2TR

This is the result that we arrived at earlier for this problem. The Biot - Savart
law will always yield results that ere consistent with Ampere s law and with

experiments.

16 -9 FPorce Between Two Parallel Wires

Figurg 16-11 shows two long parallel wires separated by & distance d carrying
currents I1 and Izof the same orientetion. It is an experimental fact that two
such conductors attract each other.
B d .First wire will produce a megnetic field whose
(:) magnitude at the site of the second wire is, from
Eq. (16-26),

. I
; ® 3, = o (16-33)

2 .
27a
Iy - The right-hand rule shows that the direction of
l2 B, B, at wire 2 is down, as chown in the figure.

1 .
Wire 2, which carries a current I,, finds itself

immersed in an external magnetic field éi. A length/!
of this wire will experience a sideways magnetic

Figure 16 - 11 force, see Eq. (16-6), whose magnituce is
s Y b
F, = I,4 2 ——, (16-34)
2 2*B1° T3

The right hand rule tells us that f; lies in the plane of the wires and points
to the left in Fig. 16-11.

We could have started with second wire, computed the magnetic field which it
produces at the site of wire 1, and then computed the force on the first wire. The
force on wire 1 would, for parallel currents, point to the right. We see that two
perallel wires that carry perallel currents attract each other. The forces that two
wires exert on each other are equal and opposite, as they must be according to New-
ton’s law of action and reaction. For entipsrallel currents the two wires repel eech
other.

The sttraction between two long perallel wiree is used to define the current
of 1 ampere. Suppose that the wires are one meter apart (d = 1,0 m) and the two
currents are equal I1 = 12 = I. If thiec common current is adjusted unti}% by measure-
ment, the force of attraction per unit length between the wires is 2.10° ' N/m, the
curreﬁt is defined to be one ampere. From Eq. (16-34) we have
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2 =7
F - c“oI - 47m.10 7.1 -
) 2 7d 2T )

7

N/m

as we expected.

16 ~10 Electromeagnetic Induction

The development of electrical engineering began with Faraday and Henry, who
incependently and at nearly the same time discovered the principles of induced
electromotive force and the methods by which mechanical energy can be converted
directly to electrical energy.

Let us consider a conductor of length Z in a
uniform megnetic field, perpendicular to the plane
¥ . § of a Fig. 16-12 and cdirected away from us.

v

R4 vy N Let the conductor be set in motion toward the
' right with a velocity v , perpendicular both to ite
own length and to the magnetic field. Every charged

particle within the conductor experiences a force
F = qvB which is directed along the length of the
. conductor. Thus the electrons would collect at the

<y -7

. lower end of the conductor, leaving the upper end
x x positive. This distribution of charges establishes
an electric field, wnich balances the force caused
Figure 16-12 by the conductor in a magnetic field, or
q§= q\’\;xg)-
For so called induced electric field we obtain
g — -3

E = v xB. (16-35)

de N Imagine now that the moving con-
* » * «B ductor clidec along & stationary

— U-shaped concuctor as in Fig. 16-13.

s From the previous analysis it is clear
LI Voo that the current I will be established
* . > . I within the U-ghaped conductor. As a

L

|

\

result of this current the excess
charges at the ends of the moving con-
ductor are reduced, the electrostatic

-

c = E; M J ] * field within the moving conductor is
weakened, and the magnetic forces cause

a further displacement of the free

Figure 16 -13 clectrons within it from a towarc b.

As long ss the motion of the conductor
is maintained there will be a current in the U-shaped conductor in & counterclockwise
direction. The moving conductor corresponds to a seat of electromotive force and is
said to have induced within it an electromotive force whoce magnitude we now compute.

The definition of electromotive force (see Cection 15-3) is the ratio of the
work done on the circulating charge to the guantity of thig charge. Let I be the
current in the circuit in Fig. 16-13. Because of the existence of this current, the
field exerts a force toward the left on the moving conductor, an¢ therefore an
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external force provided by some working agent is needed to mesintain the motion.
The work done by this agent is the work done on the circulating charge - hence the
direct conversion, in this device, of mechanical to electrical energy.

The force exerted by the magnetic field on the moving conductor, for our case,
see Eq. (16-6), is
F = I4B.
j113

The force exerted by an extermsl agent has an equal magnitude but opposite direction

(see Fig. 16-13), or

Foo = -I4B,

The distance traveled by the conductor in time dt is

ds = v dt
and thus the elementary work dW done by this force is
aw = Fext ds = -IZ3B3vdt.

The product (I dt) is the charge displaced in time dt. Hence
QW = =-Blvdq .
Thus for the induced electromotive force we have
= ¥ _ "
£ = x - BLv . (16-36)
The induced emf in the circuit of Fig. 16-13 may be considered also from another

point of view. While the conductor moves toward the right a distance ds, the area
of the eircuit a-b-e~-d increases by

ds = £ ds (16-37)
and the change in magnetic flux through the area bounded by the circuit is
d¢g = BaS = Blds .
The induced emf given by Eq. (16-36) can be expressed as:
£ = -Beg S8,
dat
Taking into account Eq. (16-37) we can write
LR .-
dt dt
or p
d
Er me—, (16-38)
dt

This equation is known as Faraday s law which can be applied to any circuit
through which the magnetic flux is caused to vary any means whatever. We see that
the induced emf in the circuit is numericelly equal to the rate of change of the
flux through it. If we place a conducting loop in a time varying magnetic field,
the flux through the loop will change and an induced emf will appear in the loop.
This emf will set the charge carriers in motion, that is, it will induce & current.
The direction of this current is determined by so called Lenz s law which states
that the direction of an induced current is such as to oppose the cause producing
it. The induced electric fields are just as real as electric fields set up by
static charges and will exert a force on a charges.

We can write Faraday s law for a more general case, taking into account that

£= $Eal .
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If Eq. (16-39) is combined with Eq. (16-38) we obtain

- —b d
E.dZ = - —:Eg .
dat

Substituting into this expression Eq. (16-2) for magnetic flux we have
— — - _ 4d — — _
ﬁSE.dz = dtHB.dS . (16-40)

This is Faraday s law of induction in the most general form. This law gives the
value of induced emf no matter whether the change in megnetic flux is produced by
moving a coil, moving a megnet, changing the magnetic induction, changing the shape
of conducting loop or in other ways.

Equation (16-40) is also known as second Maxwell ‘s equation.
There is a great number of devices using the principle of electromagnetic
induction: generators, transformers, meters etc.

16 -11 Inductance

We discussed in the last section how a changing magnetic flux through a circuit
induces an emf in that circuit. We saw earlier that an electric current produces a
magnetic field. Combining these two ideas, we expect that a changing current in one
circuit ought to induce an emf in a second nearby circuit and even %o induce an
emf in itself, Now w will treat this effect in a more general way in terms of
what we will call} mutusl inductance and self-inductance.

Let us consider & closed loop ¢ carrying
a current I, see Fig. 16-14.

Magnetic flux ¢B through a surface S
which is bounded by this loop is given as

¢y = _[f B.ds . (16-41)
S

To obtain magnetic induction B in a given

point on the surface we can use Biot - Savart

law, or R

E, - @l (j& dlx2r°
— 47 14 b el

where r° is a unit vector in the direction of
Figure 16 - 14 T (see Fig. 16-8 ) and integration is taken

over all loop.
Substituting Biot - Cavart law in Eq. (16-41) we obtain for a magnetic flux

through a surface S

ml =5 =% —
= —= (dZ x r ). dS . (16-42)
d)B i[47tr Sﬁ
5 &£
Denoting o = .
L =J’[ ‘uz jﬁ(dz x ). &< , (16-43)
4Tr
3 &£

we can write Eq. \16-42) as
¢= LI, (16-44)
B

where constant of proportionality between ¢%and I, L is called self-inductance. As

it is seen from expression (16-43) the magnitude of L depends on the geometry and
on the permeability m of space in which the loop is situated.
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The SI unit of inductance can be obtained from Eq. (16-44) as

[LJ Eﬁj . b V.s

= el = e—— = === = H

(1] A A

This unit has a special name, the henry \abbr. H).

Let us now imagine that a time varying current passes through the loop. In this
case a changing magnetic flux is produced and thie in turn induces an emf. This
induced emf opposes the change in flux (Lenz s law - see preceding section). For
example if the current in the loop is inereasing the increasing magnetic flux
induces an emf that opposes the originel current and tends to retard its increase.
If the current is decreasing, the decreasing flux induces an emf in the same direct-
ion as the current, thus tending to maintain the originel current.

The value of emf induced in a loop of inductance L can be obtained from Fara-
day ‘s law (Eq. 16-38) as

a¢
- -—B . & g = -1 ¥, (16-45)
dt at at

Now let us consider a case when loops 1 and 2 are placed near each other, as in
Fig. 16-15.

Dy

Figure 16-15

It is obvious that a changing current in one loop will induce an emf in the
other. According to Faraday s law, the emf & induced in second loop is proportional
to the rate of change of flux passing through it. This flux is due to the current
L Il in first loop, end it is often convenient to express the emf in loop 2 in terms

of the current in loop 1.

We let ¢21 be the magnetic flux in the second loop due to the current I1 in
the first loop. If the two loops are fixed in space then ¢21 is proportional to the
current I, in the first loop; the proportionality constant is called mutual induct-

ance, M defined by

21’ ¢21
= . (16-46)
M I 4
The emf &, induced in second loop due to the changing current in the first loop is
a¢
= - 2L -
& = < - (16-47)
Combining Egs. (16-47) and (16-46) we obtain
al
= - —1 16-48
& My Fral (16-48)
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This expression relates the current in the first loop to the emf it induces in
the second lbop. The mutual inductance of the second loop with respect to the first
loop is & constant that dependes on the size, shape, on the relative positions of
the two loops and also on whether iron \or other ferromagnetic materisl) is present.

Suppose now, we consider the reverse situation, when a changing current in the
second loop induces an emf in the first loop. In this case we have
s d12 )
= v B — (16-49
1 12 at
where M12 is the mutual inductance of the loop 1 with respect to the loop 2. It is

possible to show, although we will not prove it here, that M, = M21' Hence, for a
given arrangement of loops, we do not need the subscripts and we can let

5.12 = M21 = M \16=50)
so that
ar,
El = -~ M —= (16-51)
at
anda dIl
€, = -¥—. (16-52)
at

The SI unit for mutual incuctance is the henry (H).

16 12 Energy @and Energy Density in the
Magnetic FPield

When we lift a stone we do work, which we can get back zgain by lowering the
stone. When we pull two unlike charges apart we like to say that the work we do is
stored in the electric field between the charges. We can get it back from the field
by letting the charges move closer together again.

In the same way we can store energy in a magnetic field. For example, two long,
rigid, parallel wires carrying current in the same direction attract each other and
we must do work to pull them apart. We can get this stored energy back at any time
by letting the wires move back to their original positions.

To derive a quantitative expression for the ctorage of energy in the magnetic
field, let us consider Fig. 16-16a, which shows a source of emf & connected across
a switch to & resistor R and an inductor L.

At the instant when the RL circuit is connected to the emf &, the current
starts to rise gradually as shown in Fig. 16-16b. Let us apply the second Kirchhoff's

R

Figure 16 - 16
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rule (see Eq. 15-45) to the circuit of Fig. 16-16a. The emf’s in the circuit are

the battery € and the induced emf CL = -L g% . These must equal the potential
drop across the resistor, or ‘
£ + EL = RI
or
dI
£€-1 & = RL. {16-53)
If we multiply each side of this equation by I we obtain
aI 2
€I - LI = = RI®. (16~
o 54)

Equation (16-54) represents a statement of the conservation of energy for LR circuit.
The terms in Eq. (16-54) have the following physical interpretation:

-~ The term E1I expresses the rate at which the seat of emf delivers energy to
the eircuit.

- The tern R12 expresses the rate at which energy appears as thermal energy in
the resistor.

- Energy that does not appear as thermal energy must be stored in the magnetic
field. Thus the term LI %% must reprecent the rate Efg at which energy is stored
in the magnetic field, or

du
O al ,
dt dat
we can write this as
dUm = LI &I .
Integrating yields
I
o 1.2
U = f LI &I = 3 LIZ, (16-55)
o

which represents the total stored magnetic energy in an inductor of inductance L
carrying a current Im.

Just as the energy stored in a capacitor (see Eq. 14-61) can be considered to
reside in the electric field between its plates, so the energy in an inductor can be
considered to be stored in its magnetic field.

To write the energy in terms of the magnetic field, we can consider a straight
wire carrying a current I. Let us choose & circular flux tube around the wire, see
Fig. 16-17, with a cross section dsS.

As a convenient starting point we use Eq.
(16-55). Taking into account that ¢B = LI we
obtain:

- 1 -
u, = 31 ¢, . (16-56)

The lines of induction lie in the surface of the
flux tube so that the tube encloses a certain
amount of flux:

&1

>
d ¢B = B.
where 55 = d< ﬁ; .
Let us choose an elementary volume 4V of the
flux tube. Thus we can write the energy of the
magnetic field enclosed in this elementary volume

(see Eq. 16-56) as

Figure 16-17
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av, = 314 (PB . (16~57)
To express the current we can use Ampere ‘s law, see Eq. (16-26). For vacuum we have
B = w H (see 16-72), thus we have:

¢3.0f = @1 Gy Hodl = pI

or
- —
H.df = I, (16-58)
Substituting Eq. (16-58) and expression for d(ﬁB into Eq. (16-57) we obtain:
au --1-9517152[[553 h al.as = av
e =3 . .d< where .dS =4

The energy of magnetic field enclosed in volume V ie given by integration:

1 (==
U, = ?ﬂ H.B av . (16-59)
v
We caen define the energy dencity of magnetic field as the energy per unit volume:
dUm
L E;- or dUm = Wy av .

From this expression we can obtain the energy of magnetic field enclosed in a
volume V as

Uy tgwmdv.

From the comparison of previoue relation and Eq. (16-59) we obtain for the
energy density at any point in which there is a certain magnetic field:

w, = A3 [0.n73] (16-60)

l6 ~-13 Three MNagnetic Vectors

In section 14-12 we saw that if a dielectric ic placed in an electric fielad,
polarization charges will appear on its surface. These surface charges, which find
their origin in the elementary electric dipoles (permenent or induced) that make up
the dielectric, set up a field of their own that modifies the original field.

In magnetism we find a similar situstion. If magnetic materials ere pleced in
an external megnetic field, the elementary magnetic dipoles (see section 16-4) will
act to set up & field of their own that will modify the original field. To describe
this situation we find it useful to introcuce, engpt of magnetic induction vector_*
§, two other magnetic vectors, the magnetization I and the magnetic field strength H.

Consider & torus,see Fig. 16-18a,carrying a current I, in its windinges and
designed so that its core, assumed to be iron, can be removed. The magnetic induction
B will be much greater when the core is in place than when it is not, assuming that
the current in the windings remains unchanged.

We can understand the large value of B in the iron core in terms of the aligne-
ment of the elementary magnetic Gipoles in the iron. 4 hypothetical slice out of the
iron core, as in Fig. 16-18b, has & magnetic dipole moment 5}2 equal to the vector
sum of all of the elementary magnetic dipoles contained in it.

= -
We define our first subsiuiary vector, the magnetization M, as the magnetic

moment per unit volume of the core material. For the slice of Fig. 16-18b we have
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daé
being cross-section of the core.

d

iron core

a) b)
Figure 16-18

Wwhen we discussed Ampere s law, see Eq.(16-26), we assumed that no magnetic
materials were present. If we apply this law to the circular path of integration
shown in Fig. 16-18s, we have ]

B.2Tr = & NI (16-61)

in which r, is the mean radius of the core and N is the number of turns. We see at
once that Ampere s law expressed by Eq. {16-61) is not valid when magnetic materials
are present. This equation predicts that, since the right side is the same whether
or not the core is in place, the magnetic induction should also be the same, &

prediction not in accord with experiment.

We can increase B in the absence of the iron core to the value that it has when
the core is in place if we increase the current in the wincings by an smount IM'
The magnetization of the iron core is thus equivalent in its effect on B to such a
hypothetical current increase. It is possible to give reality to the magnetizing

current by viewing it as a real current that flows arround the magnetic material at
its surface, being the resultant macroscopic effect of all the microscopic current

loops that constitute the atomic electron orbits.

We choose to modify Ampere’s law by arbitrerily inserting a magnetizing current
term I on the right, obtaining

QSB.dL = ML+ Iy - (16-62)

If we give I, a suitable value it is clear that Ampere s law, in this new form, can
remain velid. It remsins to relate this hypothetical magnetizing current to someth-
ing more physical, the megnetization vector M.

Applying Eq. (16-62) to the iron ring of Fig. 16-18a yields

B.2Xtr, = G NI, + NIM,O) . (16-63)
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Magnetic moment of a magnetic dipole in the form of a current loop is given
by Eq. (16-9). For the case when the loop has N turns, the loop area is S and the
loop current is I than the mesgnitude of the megnetic dipole moment ie:

& = NIS (16-64)
To relate Iy o to the magnetization ¥ let us use Eq. (16-64) to find what increase
IM » in current in the windings around the slice of Fig. 16-18b, would produce a
H
magnetic moment equivalent to that actually produced by the alignment of the
elementary dipoles in the slice. We have

M(E a2) = <N d:d )IM g,
2JIro ’0

when the quantity in the first parentheses on the right is the number of turns as-
sociated with the slice of thickness & . This equation reduces to
N IM’° = J.Zitro . (16-65)
Substituting this into Eq. (16-63) yields
2T = . . -
B.2 r, prIO *pM 2xr, (16 56)

We now choose to generalize from the special case of the torus by writing Eq.
116-66) as

és.dz = @I+ (uo?gM.dl
or

—’_ ﬁ .
?(———ﬁ— az = I. (16-67)
%

The quantity in parentheses occurs so often in magnetic situations that we give
it a special name, the magnetic field strength H, or

i E _ B - &y M
“o

which we write as
- 4 . \ 8
B = _u H + M M {16-6 )

Ampere s law can now be written in the eimple form

§H.61 = 1 (16-69)

which holds in the presence of magnetic materials.

l6 -14 Magnetic Properties of Matter

All materials are magnhetic to some extent. The material which has the most
striking magnetic propertiec is iron. Similar magnetic properties are shared also
by nickel, cobalt, and - at sufficiently low temperatures (below 16 °c) by gado-
linium and some alloys. This kind of magnetism is called a ferromasgnetism. However
all ordinary substances co cshow some magnetic effects, although very small ones.
This small magnetiem is of two kinds. Let us imagine a strong electromagnet which
has one sharply pointed pole piece and one flat pole piece, as drawn in Fig. 16-19.

The magnetic field is much stronger near the pointed pole than near the flat
pole. If a small piece of material is fastened to a long string and suspended
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between the poles, there will be,
Jéﬂééig;g in general a small force on it.
Thie force can be seen by the
slight displacement of the hang-
small piece of material ing material whexi the magnet is
turned on. The ferromagnetic

materials are attracted very

strongly toward the pointed pole.
All other materials feel only a
very week force. Some are weakly
attracted to the pointed pole;
and some are weakly repelled.

The effect is most easily

seen with a small cylinder of

pole pieces bismuth, which is repelled from
the high-field region. Substances
Figure 16-19 ' which are repelled in this way

are called diamagnetic.If a small
piece of aluminium is suspended between the poles, the aluminium is attracted
toward the pointed pole. Substances like aluminium ere called paramagnetic.

Let us assume that we have madé measurements of H B and M for a wide variety
of magnetic materials. For paramagnetlc and dismagnetic materlals we would find,as
an experimental result, that B is directly proportional to H, or

B =2uH (16-70)

in which %, the permeability of the magnetic medium, is a constant for a given
temperature. Eliminating B between Egs. (16-70) and (16-68) allows us to write

M o= (#-1)H (16-71)

which is another expression of the linear character of paramagnetic and diamagnetic
materials. '

For a vacuum, in which there are no magnetic dipoles present, the magnetization
M must be zero. Putting M = O in Eq. (16-68) we have

B = g H (16-72)

Comperison with Eq. (16-70) shows that a vacuum must be deseribed by # = 1. Equation
(16-71) shows that the megnetization vanishes if we put # equal to unity.

For paramégnetic materials ¥ is slightly greater than unity.

For dlamagnetlc materisl # is slightly less then unity. From Eq. (16~ 71) it is
seen that M and H are oppositely directed.

In ferromagnetic materials the relationship between B and § is fer from linear.
It was shown experimentally that # is a function not only of the value of H put
also, because of hysteresis, of the magnetic and thermal history of specimen.

The difference between paramagnetic and dismagnetic materials can be understood
theoretically at the molecular level on the basis of whether or not the molecules
(or atoms) have a permanent magnetic dipole moment. Paramagnetism occurs in materials
whose molecules have & permanent magnetic dipole moment. In the absence of an
external field, the molecules are randomly oriented and no magnetic effects are
observed. However, when an external magnetic field is applied, then this field exerts
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& torque on the magnetic dipoles (see section 16-4) tending to align them parallel
to the field. The total magnetic field (external plus that due to the aligned
megnetic dipoles) will be slightly greater than the applied field. The thermal
motion reduces the alignement, however.

Diesmagnetic materials are made up of molecules that have no permanent magnetic
dipole moment. When an external magnetic field is applied, magnetic dipoles are
induced, but the induced magnetic dipole moment is in the direction opposite to
that of the field. Hence the total field will be slightly less than the external
field. Diamagnetism is present in all meterials, but is weaker even than parsmagne-
tism,

4 microscopic examination of ferromagnetic materials reveals that these
materials are made up of tiny regions known as domains. Each domain behaves like a
tiny magnet. In an unmagnetized piece of iron, these domains are arranged randomly.
The magnetic effects of the domains cancel each other out, so this piece of iron
does not behave like a magnet. In & magnet, the domains are preferentially aligned
in one direction. The magnetic field of the domains is caused by the "spin®
magnetic moment. The name "spin" comes from an early suggestion that this intrinsic
magnetic moment arises from the electron "spinning" on its axie to produce the
extra field. In iron and other ferromagnetic materials, a complicated cooperstive
mechanism, known as "exchange coupling" operates; the result is that the electrons
contributing to the ferromagnetism in a domain "spin" in the same direction.

However we have to point out that to understand the magnetic effects of
materials quantitavely it is necessary to use quantum- mechanics.

17. MAXWELL S EQUATIONS

In classical mechanics and thermodynamics we sought to identify the amallest,
most compact set of equations or laws that would define the subject as completely
as possible. Thue for example in mechanics we found this in Newton's three laws of
motion and in the associated force laws, such as Newton s law of gravitation. In
this section we seek to do the same thing for electromagnetism.

It was the Scottish physicist James Clerk Maxwell who showed that all electric
and magnetic phenomena could be described using only four equatione involving
electric and magnetic field. These equations, known as Maxwell s equations, are as
fundamental as Newton s laws. We have already asrrived by different routes at various
pieces of it which we shall now assemble in the traditional form.

Ampere s law isee Eq. 16-25) which expresses the idea that a megnetic field ie
produced by any current, or
ggé'.dz = ul. (17-1)
Fearaday s lew of induction (see Lg. 16-40) which states that an electric field

is produced by a changing megnetic field, or

. d
E.df = - &. (17-2)
dt

Gauss’s law of electricity (see Eq. 16-28), which relates the electric field
to its sources, electric charges, or
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EO#E.ds = ZQi . (17-3)

Gauss’'s law of magnetism (see Eq. 16-3) which expresses the Tact, that the
lines of induction are continuous - they do not begin or end (as electric field

){}Sﬁ.

With this set of Maxwell s equations in so called integral form we sometimes
write the equations expressing the properties of material, or

lines do on charges), or

ot

= 0. (17-4)

T = &.¢ E
. F e (17-5)
B = @ 4 H
and - -
J =GE .

Maxwell “s equations can be also written in another, so called differential,form
that is often more convenient than Egs. (17-1) till (17-4).

To transform Mexwell ‘s equations from integral in differential form we use two
theorems known from vector anslysis. The first is called Gauss’s theorem which
relatés the integral over a surface of any vector function Ftoa volume integral
over the volume enclosed by the surface:

§7.& = [[vFfev, (17-6)
S

v

where the operator V is the del operator, defined in Cartesian coorcinates as

oF oF oF
x Y -

v .

;—2—+3L+;—?—— and the quantity VF = + +
2x 2y dz dx ay A
is called the divergance of F.
The second theorem is Stokes s theorem which relates a line integral around a
closed path to a surface integral over any surface enclosed by that path:

F.a = [[(v.H & .

The quantity V » F is called curl of f. We now use these two theorems to obtain
the differential form of laxwell ‘s equations in free space. We apply Stokes s
theorem to Eq. (17-1) and write

e d

453.5} = [f (Vv B)ds = &I .
S

The current I can be written in terms of the current density, using Eq. (15-5),
so that we obtain

[T .8 = & [7.8.

< <
-~ -

For this to be true over any area S, whatever its size or shape,the integrands
on each side of the equation must be equal:

VsE =« 3. a7-7)

Let us apply Stokes’'s theorem to the Eq. \17-2), or

— — b A d
gﬁE.d = H\VXE)dS - -9%B
g at




— —

Since the magnetic flux ¢ = 1{8. S, we have

d
g(vxi)éé = - L[,

where we use the partial derivative St since B may also depend on position.These
are surface integrals over the same area, and to be true over any area, we must have

2 - _2B i}
VrE = == {17-8)

We now apply Gauss s theorem to Eq. (17-3):

g'ﬁ.‘é = mv_}f av = Z:l .

v

The charge Z:Qi can be written as a volume integral over the charge density e,

or Lq; = [[[¢av. Then
[z av = -el,_oquv'

v
Both sides contain volume integrals over the same volume, and for this to be true
over any volume, whatever its size or shape, the integrands must be equal:
v = L. (17-9)
€o

Finally, the fourth Maxwell ‘s equation, that is Egq. i17-4), is treated in the

same way. We obtain
vB = 0. (17-10)

Egs. (17-7J, \17-8), (17-9) and (17-10) are Mazxwell ‘s equations in differential
form.

There is, however, very important thing which must be said in connection with
first Maxwell ‘s equation. iiaxwell ‘s noticed, that there was something strange about
this Eq. (17-7). If one tekes divergence of this equation, the left hand side will
be zero, because the divergence of a curl is always zero. So this equation requires
that the divergence of 3’ also be zero. But if the divergence of 3' ie zero, then
the total flux of current out of any closed surface is also zero. However, as we
know from Eq. (15-12), the flux of current from & closed surface ie the decrease of
the charge inside the surface. This certainly can not in general be zero because we
know that the charges can be moved from one place to another.

‘Maxwell appreciated this difficulty and proposed that Eq. (17-7) should be

rewritten in the form

1 - —
— (VxB) =
“o Jd oy
and we have to add the term & EL% to its right hand side. He then obtained:
L (v.B) = FT+¢e LE. (17-11)
o S ot 5
From the analyse of dimensions it is cdlesr that the term & 7;;-expresses the
current density of the so called displacement current, or
31) = &, %_:f. (17-12)
or with respect to Eq. (14-81): .
i 2D
= L2, (17-13)
Ip 2t
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The total current density can be then expressed as sum of conduction as well
as displacement current density. In this respect it should be pointed out that I in
Eq. (17-1) expresses total current.

Finally let us summarize the complete set of Maxwell ‘s equations in differen-
tial form:

3

L=

1 2y =3
1, = ( B =3+
™ v x J

™
o+

L (Line integral of B around = loop) = (conduction plus displacement current

© density)
.
2. VxE = -H
2t
(Line integral of E around a loop) = - 4 (Flux of B through the loop)
: dat
3. 7. o= -
€o
(Flux of E through a closed surface) = (charge inside) -

€o

=

4. v .B = o
(Flux of g'through a closed surface equals to zero)

This is the set of Maxwell's eépations in differential form which describe all
the electric and magnetic phenomena. (Note that the commentaries givenm below the
Maxwell ‘s equations relate to their integral form.)
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