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Proton - has a positive charge (+e) and is located in the nucleus. 

Neutron - has no charge (is neutral) and is also located in the  

nucleus as it fills in the spaces between the protons. 

Electron - has a negative charge (-e) and is located outside of the  

nucleus in an electron cloud around the atom. 

Electric Charge is the basis of electricity. 

Elementary charge  

e = 1.602 x 10-19 C 

The charge on an atom is 

determined by the subatomic 

particles an atom consists of. 

 



Diameter of a nucleus – 1 fm = 10-15 m (the smallest nuclei) 

Diameter of an atom – 0.1 nm = 10-10 m (hydrogen atom) 

Mass of a proton or neutron – mp= 1.67 x 10-27 kg 

Mass of an electron – me= 9.1 x 10-31 kg  

Charge of a proton – Qp= +e= +1.602 x 10-19 C 

Charge of an electron – Qe= -e= -1.602 x 10-19 C 

Frequency of electron revolution – fe= 6.5 x 1015 Hz (first orbit) 

Mass of a proton is 1835 times larger than that of an electron. The 

similar ratio, like masses of a melon and cherry. 

Numbers Concernig an Atom 



Charge is denoted as Q or q. 

Charge has a fundamental unit of a Coulomb (C). 

Charges can exist only in multiples of e (elementary charge). 

One Coulomb is quite large unit: 

• A glass rod rubbed with piece of silk acquires a charge of 10 μC 

• A filtration capacitor in a DC source stores a charge of 1 mC  

• An average lightning bolt carries a charge of 15 C 

Charge cannot be created or destroyed – charge conservation principle. 

Atoms usually have as many electrons as protons, so the atom has a 

zero net charge (is electrically neutral). 

An atom which loses some electrons becomes a positive ion. 

An atom which acquires excessive electrons becomes a negative ion.  

Some Facts about Electric Charge 



Some materials tend to give up electrons and become positively 

charged and some materials tend to attract electrons and become 

negatively charged. 

If we try to rub the glass rod with the silk cloth we find that positive 

charge appears on the rod. At the same time an equal amount of 

negative charge appears on the silk cloth, so that the net rod-cloth 

charge is actually zero. This means that rubbing does not create 

charge but only transfers it from one body to the other. 

Charge conservation can be expressed by: 

Net charge before = Net charge after 

Conservation of Charge 
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An electric charge exerts a force on the other charge. Ch. A. Coulomb 

found that the force is proportional to the product of both charges and 

inversely proportional to the square of their distance.  

Coulomb’s Law 
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where 𝐹 12 is the vector force on charge Q1 due 

to Q2 and 𝑟 21
0 is a unit vector pointing from Q2 to 

Q1.  

ε0= 8.85 x 10-12 F/m is a permittivity of vacuum.  
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A simplified notation of  the Coulomb’s law is 

sometimes being used. 



Coulomb’s Law 
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The Coulomb’s law yields an important finding. If the charges Q1 and 

Q2 have the same signs, then their product is positive and the force 𝐹 12 

points away from the Q2 – it is repulsive. If the charges have different 

signs, then their product is negative and the force 𝐹 12 points towards 

Q2 – it is attractive.   
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We can summarize it by saying that like charges repel and unlike 

charges attract.  



Electric Field 

The electric field is a vector field; it consists of a 

distribution of vectors, one for each point in the 

region around a charged object. To define the 

electric field at some point P near the charged 

object, we place a positive test charge q0 at the 

point in space that is to be examined and we 

measure the force 𝐹  acting on the charge.  
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The electric field is 

defined as  

It’s unit is  V

m

In order to visualize the electric field we 

draw a series of lines called electric field 

lines or force lines.  

The electric field of a charged particle 

points radially away from the (+) charge 

or radially towards the (-) charge.  



Electric Field 

Basic properties of the field lines:  

1. Field lines emanate from a point charge symmetrically in all 

directions. 

2. Field lines originate on positive charges and terminate on negative 

ones. They cannot stop in the midair, but they can extend to infinity. 

3. Field lines can never cross. 

4. The tangent to a force line gives the direction of 𝐸 at that point.  

5. The density of force lines corresponds to the magnitude of 𝐸. 



Electric field from a point charge Q 

Let a test charge q0 be placed at a distance 

r from a point charge Q. The magnitude of 

the force acting on q0 is from the Coulomb’s 

law: 
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The magnitude of electric field at the 

position of the test charge is given by: 2
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In case that an electric field from a group of point charges is to be 

examined we can: 

1. Calculate 𝐸𝑛 due to each charge at the given point 

2. Add these separately calculated fields vectorially to find the 

resultant field  
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Example - Electric field from two charges (a dipole) 

Determine electric field at the point P due to 

charges Q1=+12×10-9 C, Q2= -12×10-9 C.  

Firstly we calculate magnitudes and then x 

and y components of both vectors 𝐸1, 𝐸2 

due to charges Q1, Q2. 
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Magnitudes E1 and E2 are equal due to the 

same distance and charge magnitude.  

1 1 2 2cos 10790 cos60 5395 / ; cos 5395 /x xE E V m E E V m       

1 1 2 2sin 10790 sin 60 9344 / ; sin 9344 /y yE E V m E E m       
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Answer: The magnitude of resulting electric field is 10790 V/m and 

the direction is parallel to the horizontal axis, positive direction.  



Electric field for the continuous charge distribution 

If the charge distribution is a continuous one, the field it sets up at a 

point P can be calculated by dividing the charge into infinitesimal 

elements dq. Each of these elements produces an electric field d𝐸 
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where r is the distance between the charge dq and 

the point P.  

The resulting field can be calculated by integration. E dE 
The charge can be distributed over a long 

wire. In this case we talk about the linear 

charge density τ.  
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The charge can be distributed over a plane. 

In this case we talk about the surface charge 

density σ.  

The charge can be distributed over a volume. 

In this case we talk about the volume charge 

density ρ.  



An Electric Field of a Dipole 

A dipole is represented by two charges of the 

same magnitude and different signs separated 

by a distance 2a. We will examine electric 

field on the vertical axis in the middle between 

the charges. Using principle of superposition: 
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The vertical components compensate each 

other, so the resulting field is 
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The dipole moment is 2p aQ
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A Dipole in an Electric Field 

The dipole moment can be also considered a 

vector of magnitude 2aQ pointing from the 

negative charge to the positive one.   

𝑝  

If a dipole is placed in external electric 

field 𝐸 at an angle α, there are two 

equal and opposite forces acting on it.   

F Q E 

2𝑎 

The net force is zero but there is a torque τ about the axis through 0.  

0 𝐸 

sin ( ) sin( ) (2 ) sinQE a QE a aQ E          

After substituting 2p aQ we obtain  sinpE 

The equation can be also 

written in vector notation p E  



A Dipole in an Electric Field 
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Work W must be done to change the 

orientation of the dipole in an external 

field. This work is stored as potential 

energy U. The reference angle for zero 

potential energy is α=90°.  
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Rewritten in the vector form U p E  



Gauss’s Law and Electric Flux 
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Let the surface be divided into 

elementary surfaces dS, small 

enough to be considered a plane. 

Electric field can be then taken as a 

constant for the surface. Electric 

flux through this area is  𝑑𝑆 

cosEd EdS  

The elementary surface can 

be also written as a vector  
0dS n dS

The formula for the electric 

flux can be then written in 

vector form  

Ed E dS  

The total electric flux through 

an area S is given by  
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Where α is the angle between the vector 𝐸 and a unit vector 𝑛0 

perpendicular to the surface dS.   



Gauss’s Law and Electric Flux 

Let us discuss a closed surface surrounding some volume. The 

electric flux through the surface is  

The flux through a surface is proportional to the number of electric field 

lines through it. If the number of lines entering the volume is equal to 

the number of lines leaving the volume then there is no net flux out of 

this surface. The flux ΦE will be nonzero only if some lines start or end 

within the volume. Since the lines start or end only on electric charge, 

the flux will be nonzero only if the S encloses a net charge.  
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The Gaus’s law can be formulated by: Electric flux through a closed 

surface equals to the net charge enclosed by that surface divided by a 

permittivity of free space.  
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Gauss’s Law - deduction 

Let’s suppose that the surface S 

encloses charges Q1, Q2, …, Qn. If we 

consider elementary area dS0, which 

is a projection of dS into the direction 

perpendicular to 𝐸, we can write: 
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Application of Gauss’s law – a point charge 

Q 

𝐸 𝑑𝑆  
We will examine the electric field around a 

positive point charge of magnitude Q. 

Considering a Gaussian surface in the form 

of a sphere at radius r, the electric field has 

the same magnitude at every point of the 

sphere and is directed outward. 

Since the directions of 𝐸 and d𝑆  are parallel 

also at every point of the sphere, we can 

simplify the Gaus’s law. 

r 

2cos 4E

S S S S

E dS E dS E dS E dS E r             

2

0

4
Q

E r


 

2

04

Q
E

r
The electric field at radius r 

is then given by 

E 

r 



Application of Gauss’s law – a sphere of uniform charge 

Q 

𝐸 𝑑𝑆  
Now we have a dielectric sphere of radius R 

charged with uniform charge density ρ of the 

total magnitude Q.  

When inside the sphere (r<R) we are not 

surrounding the entire charge Q but only a 

part of it Q’.  
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For r>R we can use the 

same formula like for the 

point charge.  
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Finally we can write for r<R 
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Application of Gauss’s law – a charged wire 

We are examinig electric field 

around a long wire charged with 

linear density τ. In this case we 

choose Gaussian surface as a 

cyliner centered around the wire 

or radius r and length L.  
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The electric field at the 

distance r is given by 

𝐸 𝑑𝑆  𝐸 

𝑑𝑆  

The electric flux through the cylinder caps is zero because there is right 

angle between 𝐸 and d𝑆 .  The flux passes only through the cylinder wall:  
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r 

The charge surrounded by 

the cylinder is Q=τ·L 



Application of Gauss’s law – an infinite charged plane 

Now we have a charged plane of surface 

charge density σ. The Gaussian surface 

is a cylinder perpendicular to the plane. 

The electric flux through the cylinder wall 

is zero this because of the right angle 

between 𝐸 and d𝑆 . The flux passes only 

through both cylinder caps of area S.  
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We can note that the electric field around an infinite charged plane is 

constant and does not depend on the distance from the plane. The 

electric field is homogeneous.  
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Application of Gauss’s law – two parallel charged planes 

This is the case of two parallel charged 

infinite planes of the same charge 

density σ and different charge signs.  

We can see that the force lines to the left 

from positive plane and to the right from 

negative plane compensate each other 

so the electric field outside the planes 

must be zero.  
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We can also see that the density of force lines between planes is 

doubled compared to the single plane. This means that if the electric 

field caused by a single plane is Es then the electric field E between 

planes must be 2Es.  

The electric field between infinite parallel planes is also constant and 

does not depend on the position between planes.  
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Electric Field and Conductors 

𝐸 

𝐸 𝐸 

𝐸 

1. The net electric charge of a conductor 

resides entirely on its surface. The mutual 

repulsion of like charges from Coulomb's Law 

demands that the charges be as far apart as 

possible, hence on the surface of the 

conductor. 

2. The electric field inside the conductor is 

zero. Any net electric field in the conductor 

would cause charge to move since it is 

abundant and mobile. This would violate the 

condition of equilibrium: net force = 0. 

3. The external electric field at the surface of the conductor is 

perpendicular to that surface. If there were a field component 

parallel to the surface, it would cause mobile charge to move along the 

surface, in violation of the assumption of equilibrium. 



Electric Field Around a Conductor 

𝑑𝑆  

Our Gaussian surface will be a small 

cylinder perpendicular to the surface. 

One cap of the cylinder will be just 

above the surface and the other just 

below the surface.  

The electric field is zero inside the 

conductor and is perpendicular to the 

surface just outside it.  

The electric flux passes ony through the cylinder cap outside. If we 

choose the cylinder cap area S small enough (dS), the electric field 

𝐸 will be uniform over it.  
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where σ is the surface charge 

density at the place of cylinder.  

The electric field at surface of 

conductor is then  
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Work and Potential in an Electric Field 

If we place a unit charge Q0 into an 

electric field 𝐸  around charge +Q, the 

force 𝐹 e acting on it will be  

0eF Q E

The work done by this force to move the 

unit charge Q0 from point K to L is: 
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An electric field due to a point charge Q is: 
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pointing outward from the Q. 

0 0 0
0 02 2

0 0 0 0

1 1 1

4 4 4 4

L

K

rL L

r L KK K

Q Q Q Q Q QQ dr
W Q r dr

r r r r r   

   
       

   
 

0 0 cos

cos ; cos

r dr r dr

d r
dr

dr



 

    

  



Work and Potential in an Electric Field 

The work done by the force 𝐹 e to move a 

the unit charge Q0 from point K to L is: 

We can note that the work W does not depend on the path taken, it 

depends only on the initial and final position. This also means that it 

we return back from L to K by a different path, the total work done will 

be zero. These are properties of conservative field.  
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The potential energy U of the unit charge is defined as work done by the 

external force 𝐹 ext in moving the charge Q0 from the reference point B to 

the point P. The force 𝐹 ext must overcome the force 𝐹 e, so 𝐹 ext = - 𝐹 e  
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The potential energy for 

UB=0 is then 

The electric potential is 

defined as potential energy 

per unit positive charge.  
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Work and Potential in an Electric Field 

The unit of electric potential is Volt [V]. If 

we want to express the potential difference 

between points K and L, we can write: 

L
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We can evaluate an expression for the 

potential at the point L .  
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For convenience we often place the 

reference point K to the infinity and we 

consider the potential to be zero here. 

Then we can simplify: 
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To calculate a potential due to a group of 

charges we can use the superposition 

principle by simple adding particular 

potentials φi due to each charge.  
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In case of uniform charge distribution we 

must integrate to determine the potential.  0
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Electric Field and Potential 

To find the relation between the electric field and potential we will 

consider two nearby points (x,y,z) and (x+dx,y+dy,z+dz). The 

potential change from the first point to the second is: 

d dx dy dz
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We also know that d E dr    dr idx jdy kdz  and 

Expressions for dφ 

can be compared 
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We can finally write  E grad 



Example - electric potential around a point charge 

Determine the potential φ at a 

distance rL from a positive single point 

charge.  

The magnitude of electric 

field due to a positive 

point charge is: 
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The potential is given by 
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Since the vector d𝑟  points in the 

negative direction of the r axis, we 

have to change the sign again, so  
E dr E dr  

The potential is equal to  
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Example - electric potential around a point charge 

The electric potential due to a point charge was 

deduced as 
04
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This is a dependence dropping hyperbolically and we can see from the 

formula that the surfaces with constant φ are concentric spherical 

areas.  

These areas are called equipotential surfaces in 

the 3D case or equipotential lines in the 2D case. 

The equipotentials for the point charge 

configuration are shown on the picture by dashed 

lines. 

Higher concentration of equipotentials mean 

higher electric field intensity and vice versa.    

 



Graphical Interpretation of Electric Potential 

In case of two large parallel charged 

plates of different signs we can see that 

equipotential surfaces are represented by 

planes parallel with the plates (dashed 

lines). The electric potential changes 

linearly here.  
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 
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E dr dr r
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
     

  

 
A B 

The next picture shows electric field and 

equipotentials (dashed) for the electric 

dipole.  

There is always right angle between force 

lines and equipotential lines.  

Ed 



Capacitance 

We have two large parallel conductive 

plates of the same charge density σ but 

different charge sign. The area of each 

plate is S, their distance is d and the 

space between them has permittivity ε0.  

d 
dielectric 

Plate A, 

σ+, area S  

Plate B, 

σ-, area S  

𝐸 

0

E





We already know that the electric field 

between such plates is 

0 0 0

d S d
V d Q

S S

 

  
  The potential difference V= φA-φB is called 

voltage. The voltage between the plates is 

The proportionality between voltage and 

charge can be expressed by a constant C 
Q CV

The constant C is called capacitance and 

for the parallel plate confirugation it is equal 
 0SC F

d




lead 

ε0 



Capacitance 

A system of two isolated conductors is 

called a capacitor and the unit of its 

capacity is Farad.  1
1

1

C
F

V


The unit of Farad is too large in practice. The capacity of the most 

common capacitors for electronics (on the picture) ranges from pF 

(10-12 F) to µF (10-6 F). An electric power line has a capacity to ground 

in units of nanofarads per kilometer (1nF= 10-9 F).  

A single isolated conductor can also have a capacitance. It is defined 

as a ratio between charge Q and absolute potential φ. C= 
𝑄

φ
.  

The potential is relative to the zero potential in the infinity.  



Capacitor as Energy Storage 

The energy stored in a capacitor is equal to work done to charge it. 

Charging means removing a charge from one plate and adding it to 

another. The work needed to transport a small amount of charge dq 

when a potential difference V is present on the plates is 

Since V= 
𝑄

𝐶
 then the work 

done is 

dW V dq

2 2

0 0 0

1 1 1

2 2

QQ Q
q Q

W Vdq qdq
C C C

 
    

 
 

The work done is equal to 

electrical potential  energy 

stored.  
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Energy Stored in a Parallel Plate Capacitor 

From the previous we know relations for the electric field between 

charged parallel plates and for capacitance.  

0;
SV

E V Ed C
d d


   

Then we can write for the 

potential energy 
2 2 2 20

0

1 1 1
( )

2 2 2

S
U CV E d E S d

d


   

The product S∙d represents a volume between the plates. If we divide 

both sides of the equation by the volume, we obtain energy density  w. 

2
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U
E

S d
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

2

0

1

2
w E

3

J

m

 
 
 

Although the formula for w was deduced for the case of the parallel 

plate capacitor, it is valid for any region where the electric field is 

present.  



Dielectrics 

In this part we will discuss insulators or dielectrics – materials, which 

do not conduct electricity.  

What happens when we place a dielectric material in an electric field?  

The answer depends on the type of used material and its molecules, 

we distinguish between 

a) Polar molecules 

b) Nonpolar molecules 

Polar molecules – some molecules have nonsymmetric arrangement 

of their atoms. They have different position of the effective center of 

positive charge and negative charge due to this arrangement. As a 

result of this polar molecules indicate a dipole moment 𝑝 .  

When such material is exposed to an external electric field, the dipole 

moments tend to align with the field.  



+8 

+1 +1 

𝑝  

Oxygen 
Center of + 

charge 

Center of - 

charge 

Dielectrics 

A typical polar molecule is water 

molecule H2O. Oxygen nucleus with 8 

protons is much stronger in attraction of 

electrons then hydrogen atoms with 1 

proton each. This fact means that the 

position of the center of negative charge 

is closer to the oxygen nucleus then the 

position of the center of positive charge. 

The dipole moment 𝑝  is marked in the picture. If we apply an external 

electric field, the moments will tend to align with the field, but the 

alignment will be only partial and dependent on the field intensity and 

temperature.  



Nonpolar molecules – we can find them in 

some gases. The molecules are symmetrical, 

so positions of centers of charge are the same 

and there is no dipole moment.  We can see it 

on an oxygen molecule.  

Dielectrics 

Oxygen molecule 

If such molecule is exposed to an electric field, negative electrons are 

pulled one way and positive nuclei are pulled the opposite way. This 

results in slight net displacement of the charge, so the dipole moment 

is present as well.  

Conclusion: both types of molecules can acquire a dipole moment 

when placed in an electric field. The dielectrics become polarized.  



Dielectrics and a Capacitor 

ε=ε0 

ε= εrε0 

If we have a parallel plate capacitor with 

vacuum between electrodes, its capacity 

was deduced as 
0

0

S
C

d




If the space between plates is filled with 

dielectric the formula changes to 

where εr is a dielectric constant or 

relative permittivity .  

0
d r

S
C

d




If we place the same charge Q on each capacitor 

and mark corresponding voltages Vd (dielectric) and 

V0 (vacuum), we can write 

0 0;d dQ C V C V  From the upper formulae we can deduce 
0

d
r

C

C
 

0 0

0

d
r d

d r

C V V
V

C V



   so 



Dielectrics and a Capacitor 

Our deduced formula for Vd shows us that the voltage 

between plates is lower in case of dielectric compared to 

the situation with vacuum for the same charge applied.   

If we also realize that electric field is directly proportional to the 

voltage for the parallel plate arrangement V=E∙d, it is obvious that 

also electric field is weaker in the dielectric. Why?  

0
d

r

V
V




If we apply an external field to the 

parallel plate capacitor with dielectric 

between plates, molecules in the 

dielectric polarize, which induces an 

additional surface charge on the 

dielectric. The positive surface charge 

equal in magnitude to the negative 

one. Electric field caused by the 

surface charge has opposite direction 

to the external field.  



Dielectrics and a Capacitor 

If we mark the external field 𝐸0, and the electric field set by the surface 

charge 𝐸′, then the resultant electric field 𝐸 is given by 

0E E E 

𝐸0 𝐸′ 

𝐸 

Conclusion: if we place a dielectric in an electric field, induced 

surface charges weaken the original electric field in the dielectric.  



Relative Permittivity of Various Materials 

Material Relative permittivity εr 

Air 1.000536 

Body tissue 8 

Concrete 4.5 

Glass 3.7 – 10 

Ice 3.2 

Insulation of cables 1.5 - 4 

Paper 2.3 

Plexiglass 3.2 

Silicon 12 

Vacuum 1 

Water 4 – 88    (88 at 0°C) 



Dielectrics, Capacitor and Gauss’s Law 

a) b) 

We have again a comparison between parallel plate capacitor without 

dielectric (a) and with dielectric (b). If we apply Gauss’s law to the (a) 

with Gaussian surface defined by the dashed line, we obtain  

0 0 0

0

q
E dS ES q E

S
 


    

If we apply Gauss’s law to the (b) we obtain 

0 0

0 0

q q
E dS ES q q E

S S
 

 


      

Where q is free charge and q’ is induced charge.  

[1] 



Dielectrics, Capacitor and Gauss’s Law 

Now we recall previously mentioned formulae 

Considering 

0

1
1

r r

q
E dS q q q q

 

 
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 


Finally 

0 0 0 0;d r

r d d r

V V E E
V and V E d E

V E


 
      

0
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0r

q
E
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Combining with [1] we obtain 

0 0 0

;
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q q q q
q q

S S S    


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 

0 r E dS q   

We can note that the flux integral contains a dielectric constant εr and 

that the charge within Gaussian surface is only the free charge q. 

Induced charge is hidden in the εr.  



Polarization and Electric Displacement 

Previously we deduced 

an equation 0 0 0r

q q q

S S S   


 

After small arrangements  

0 0 0

;
r

q q q

S S S   


  0

0r

q q q

S S S

 


 

The last term 
𝑞′

𝑆
 is the induced charge per area. 

We call it electric polarization P.  2

q C
P

S m

  
  

 

0r

q
E

S 
Realizing that  we can rewrite the 

equation to  0

q
E P

S
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The term 
𝑞

𝑆
 is called electric displacement  D.  
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The final shape of the equation in vector form is 
0D E P 



Polarization and Electric Displacement 

The displacement and polarization 

can be demonstrated on a parallel 

plate capacitor with combination of 

a gap and dielectric between 

electrodes. There are some 

important findings.  

1. Vector 𝐷 is associated only with the free charge.   

2. Vector 𝑃 is associated only with the polarization charge. 

3. Vector 𝐸 is associated with all present charges. 

4. Vector 𝑃 vanishes outside the dielectric, vector 𝐷 is not affected by 

the environment and vector 𝐸 has different magnitudes in the gap 

and in the dielectric.  



Polarization and Electric Displacement 

If we combine previously 

deduced formulae 
0

0

0

;
r

Eq q
E E and D

S S 
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we can write 
0 0 0 0r r

q
E E D E

S
       

In vector form it is 
0 rD E 

The polarization can be 

written as  
0
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And in vector form  
0 ( 1)rP E  

Finally we can formulate 

the Gauss’s law for the 

electric displacement 
0 r E dS q     D dS q 



Summary – what we have learnt 
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Coulomb’s law 

A force acting on a charge in an 

electric field 

Gauss’s law 

Relations between potential and 

electric field 

Relations between electric field, 

electric displacement and polarization 

Energy stored in a capacitor 

Energy density of electric field 



Example – Electric field on the axis of charged ring 

Given: ring radius R, charge q. E(z)=? 

Magnitude of the electric field at the point P due to 

the element ds from the Coulomb’s law: 

2 2 2 2

0 0 0

1 1 1

4 4 4

dq ds ds
dE

r r z R

 
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 
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

Horizontal component of d𝐸 is compensated by the 

element on the opposite side of the ring, so only 

vertical component dEcosΘ can be taken into account.  
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Example – Electric field on the axis of charged ring 
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A graph for q= 4 μC, R= 2 cm.  Important points and limits 
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Example – Electric field on the axis of charged disc 

Given: disc radius R, surface charge density σ. E(z)=? 

A charge contribution from the elementary ring of 

radius r is 
2dq dS r dr   

Using a formula for charged ring we can write 
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We substitute 

2 2; 2x z r dx r dr  

1/2 2 2 1/2
3/2

0 0 0

0

( )

1 14 4 4

2 2

R

z z x z z r
E x dx

  

  

 


   
      

     
    
   





2 2 1/2 2 2 1/2

0 2 2
0 0 0

1
( ) ( ) 1

2 2 2

Rz z z
E z r z R

z z R

  

  

 
      

           
   

Example – Electric field on the axis of charged disc 
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A graph for σ = 5 μC/cm2, R= 10 cm.  

Important points and limits 
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Example – Concentric spheres 

R1 

R2 

metal 

ε2 

ε1 

A conducting sphere of radius R1 is surrounded 

by a concentric dielectric layer of outer radius R2 

and permitivity ε2. The surrounding medium has 

permitivity ε1<ε2. Find the dependence of electric 

displacement, electric field and potential on the 

distance from the center of the sphere charged to 

the charge Q.  D(r)=?, E(r)=?, φ(r)=? 

Electric displacement 

Gauss’s law simplified for the concentric arrangement 
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for r>R1 

0D  for r<R1 Since the charge inside the sphere is zero, then 
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Example – Concentric spheres 

Electric field 

in the sphere 

for R1<r<R2 

for r<R1 24

Q
E

r 


Charge inside the 

sphere is zero, so 0E 

Electric field in the dielectric 2
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Q
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Electric field outside the dielectric 
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Example – Concentric spheres 

Potential  

for R1<r<R2 
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Example – Concentric spheres 

D 

r 

r 

r 

E 
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R1 R2 

R1 

R1 

R2 

R2 
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Example – Coaxial capacitor 

Determine a formula for the 

capacitance of a cylindrical capacitor 

of radii R1, R2, length l and permitivity 

of the dielectric ε. We assume that 

inner conductor is charged to +Q and 

outer one to –Q.  

From the Gauss’s law 
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Example: l=1 m, R1=1 mm, R2=3 

mm, εr= 3.  The capacitance of 

such cable is C= 152 pF.  



Example – Spherical capacitor 

Determine a formula for the capacitance of a 

spherical formed by two concentric spheres of radii 

R1 and R2. P permitivity of the dielectric is ε. We 

assume that inner sphere is charged to +Q and 

outer one to –Q.  
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Example: R1=1 cm, R2=2 cm, εr= 3.  

The capacitance of such capacitor is 

C= 667 pF.  


