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Magnetic Field 

A magnetic field is a vector field that describes the magnetic influence 
of electric charges in relative motion and magnetized materials.  

Magnetic fields are produced by electric currents, which can be 
macroscopic currents in wires, or microscopic currents associated with 
electrons in atomic orbits. 



Magnetic Field, Definition of 𝑩𝑩 

If we place a test charge q in the electric and magnetic field, the force 
acting on the charge will have two components.  

Electric force, which depends only on the electric field and is 
independent on the motion of the charge. The electric force is also 
straightforward.  

Magnetic force, which depends on the magnetic field and on the 
velocity of the charge. The magnetic force is also at the right angles 
with the velocity.  

To be able to describe the magnetic force, let us define the magnetic 
induction 𝐵𝐵. The unit of 𝐵𝐵 is Tesla. 1T= 1𝑊𝑊𝑊𝑊

𝑚𝑚2  = 1𝑁𝑁
𝐴𝐴∙𝑚𝑚

 

Older, but still frequently used unit is Gauss; 1T= 10 000 G 

( )e mF F F qE q v B= + = + ×
    



The electromagnetic force acting on the charge q is called Lorentz 
force and can be written as 



Magnetic Field, Definition of 𝑩𝑩 

𝐹⃗𝐹e 𝐹⃗𝐹e 

𝑬𝑬 
𝐹⃗𝐹𝑚𝑚 

𝑣⃗𝑣 

𝑩𝑩 
𝐹⃗𝐹e =q 𝑬𝑬 𝐹⃗𝐹m= q (𝑣⃗𝑣 × 𝑩𝑩) 

Since the magnetic force is always at right angles with the direction of 
motion, then the work done on the particle is always zero.  

This means that the static magnetic field cannot change the kinetic 
energy of the particle, it can only change the direction of motion.  

How to determine the direction of magnetic force 𝐹⃗𝐹𝑚𝑚? 

We can use either a right hand rule or a screw rule. 



Direction of Magnetic Force 

𝐹⃗𝐹m= q (𝑣⃗𝑣 × 𝑩𝑩) 

𝑣⃗𝑣 

𝑩𝑩 

𝐹⃗𝐹m 

Screw rule Right hand rule 

If we are looking for the direction of a vector resulting from a vector 
product, it is obvious that the resulting vector is perpendicular to the 
plane where the vectors in product are positioned.  

Screw rule – if we rotate a right handed screw in the direction from the 
first vector to the second one by the shortest way, the screw will move 
in the direction of resulting vector.  



Examples of magnetic field strength 

Source B  
Magnetic field of Earth (0° lat, 0° lon) 32 μT 
Refrigerator magnet 5 mT 
Solar sunspots 0.3 T 
Surface of a neodymium magnet 1.25 T 
Coil gap of a loudspeaker magnet 1 – 2.5 T 
Superconducting electromagnets up to 40 T 
White dwarf star  100 T 
Magnetar neutron stars 108 – 1011 T 



Magnetic Field Lines 
Similarities to electric lines 

1. A line drawn tangent to a field line is the direction of the 𝐵𝐵 at that 
point. 

2. The density of field lines still represent the strength of the field 

Differences 
1. The magnetic field lines do not 

start and do not terminate on 
anything. They form closed loops. 
There is no magnetic analog of 
electric charge.  

2. They are not perpendicular to the 
surface of the ferromagnetic 
material. 

3. They do not stop on the surface of 
ferromagnetic material 

Magnetic dipole 



Magnetic Flux 

Similarly to the electric field we can define the magnetic flux.   

[ ]B
S

B dS WbΦ = ⋅∫∫


A unit of magnetic flux is Weber [Wb].  

As far as the magnetic field lines make closed loops and there is no 
magnetic charge, all field lines entering a closed surface must also 
leave it. We can define a Gauss’s  law for the magnetic field.  

The magnetic flux through a closed surface 
equals to zero.  

0
S

B dS⋅ =∫∫




This is also known as fourth Maxwell’s 
equation 



Magnetic Force on a Current 
An electric current can be understood as a set of moving electric 
charges.  If the magnetic field exerts a force on a moving charge, then 
it also exerts force on a wire carrying electric current.  

Let us define a differential 
element of a wire of length 
𝑑𝑑𝑑𝑑  carrying a steady current I 

and placed in magnetic field 
B. The vector 𝑑𝑑𝑑𝑑 indicates the 
direction of the current flow. 𝑑𝑑𝑑𝑑 

The elementary magnetic force is ( )dF dQ v B= ×
 



𝑑𝑑𝑑𝑑 

From the definition of current and 
velocity we can write 

; dldQ I dt v
dt

= ⋅ =




The elementary force is then  ( )dF I dl B= ×


 

The total force acting on a 
conductor of the length l: ( )

l

F I dl B= ×∫


 

𝐵𝐵 

I 



Torque on a Current Loop 

We have a rectangular loop of height h and length l in a uniform field 𝐵𝐵. 
The loop carries a current I and it can rotate about an axis x – x’.  

The orientation of the loop with respect to the 𝐵𝐵 is given by an angle α 
between 𝐵𝐵 and the vector 𝑛𝑛0 of the normal to the loop.  

Using previously deduced formula          we can see that ( )
l

F I dl B= ×∫


 

the forces due to arms  1-2 and 3-4 are equal in magnitude and in 
opposite directions so they compensate each other – no net force. 
They also have the same line of action so there is no net torque.  

12 34 sin( )
2

F F I l B π α= = ⋅ ⋅ −



Torque on a Current Loop 

Forces 𝐹⃗𝐹41 and 𝐹⃗𝐹23 have the same magnitude, opposite directions and 
they do not act along the same line, so there is no net force but they 
produce a torque τm.  

41 23F F F I h B= = = ⋅ ⋅ m l Fτ = ×





sin ( )sin ( ) sin sinm l F l IhB I lh B I S Bτ α α α α= ⋅ = = = ⋅

where S= l∙ ℎ is the area of the loop. We can now define a magnetic 
dipole moment of the loop: 

0I S nµ =
 



Torque on a Current Loop 
The formula for the torque can be further rewritten in the scalar and 
vector form: 

m Bτ µ= ×


 sin sinm IS B Bτ α µ α= ⋅ = ⋅

We will assume that the magnetic potential energy U is zero when µ 
and 𝐵𝐵 are at right angles (α=90°). The potential energy is equal to 
work W to rotate the dipole from zero position to α. 

90 90 90

sin sin cosmU W d ISB d B d B
α α α

τ α α α µ α α µ α
° ° °

= = = = = −∫ ∫ ∫

U Bµ= − ⋅


In vector form 

This relation is equivalent to the energy of electric dipole  U p E= − ⋅






Charged Particle in Magnetic Field 

𝐵𝐵 𝐵𝐵 

𝐵𝐵 𝐵𝐵 

R 

x 

y 

𝑣⃗𝑣 

𝐹⃗𝐹 

𝐹⃗𝐹 

𝐹⃗𝐹 

𝐹⃗𝐹 

Q 

We will examine now what happens when a 
positively charged particle (Q) enters a magnetic 
field with initial velocity 𝑣⃗𝑣 perpendicular to the 𝐵𝐵.  

0 0 0 0 00; ( ,0,0); (0,0, )xx y z v v B B= = = = =




According to the Lorentz force and Newton’s laws 
2

2( ); ( ) d rF Q v B Q v B m
dt

= × × =


  

 

Since the 𝑟𝑟  and 𝑣⃗𝑣 have only x and y 
components, we can simply decompose to 
x and y components.   

y

x

mx Q v B Q yB
m y Q v B QxB

= =

= − = −

 

 

0 ;x
Q Qx yB v y xB
m m

= + = − After the time integration we obtain 

Let us assume for the initial time t=0 



Charged Particle in Magnetic Field 
For the magnitudes of velocity we can write 2 2 2

0; xx y v v v+ = = 

2 2
2QB QBy v x v

m m
   + + =   
   

2 2
2 2 2 22QB QB QBy yv v x v

m m m
   + + + =   
   

2 2
2 22 mv mv mvy y x

QB QB QB
   

+ + + =   
   

2 2
2 mv mvx y

QB QB
   

+ + =   
   

This is an equation of a circle with radius R 
shifted on the y axis by yc.  

0 0;x x
c

mv mvR y
QB QB

= = −

The period of revolution and 
frequency called cyclotron 
frequency can be expressed as 0

2 2 ;
2x

R m QBT f
v QB m
π π

π
= = =

Example: for an electron entering 
the field B= 0.1T with velocity v=104 
m/s we have 

2.8 ; 0.57f GHz R mµ= =



Ampere’s Law 

An experiment with iron sawdust placed 
on a piece of paper around a wire 
carrying electric current perpendicular 
to the paper shows us that the force 
lines of magnetic field are circular with 
the center at the position of the wire.  

Another experiments found that the magnetic induction is 
directly proportional to the current I flowing through the wire 
and inversely proportional to the distance r from the wire.    

IB
r

≈

The constant of proportionality was defined as 

where μ0 is permeability of vacuum.  

0

2
µ
π

7
0 4 10 /H mµ π −= ×

The complete relation for the magnetic 
induction around the wire is 

0

2
IB
r

µ
π

=



Ampere’s Law 

The previously found formula is valid 
only for the symmetrical circular 
arrangement. The Ampere’s law 
describes more general situation. Let 
us consider any closed path around 
the conductor.  

Let us determine the length integral  B dl⋅∫






cosdl r dα ϕ=We can see from the figure 

cosB dl Bdl B r dα ϕ⋅ = =




Using the known formula for B.  2
0

0
0 2

IB dl Br d r d I
r

π µϕ ϕ µ
π

⋅ = = =∫ ∫ ∫




 

So the Ampere’s law is 0B dl Iµ⋅ =∫






It is also known as the first Maxwell equation  



Biot-Savart Law 

d𝑙𝑙 𝑟𝑟 

𝑟𝑟0 

𝐵𝐵 

The Ampere’s law could become difficult to apply 
in case of more complicated shapes of the wire. 
For these cases we have a magnetic equivalent 
of Coulomb’s law named Biot-Savart law.  

We will examine the magnetic induction at the 
point P around the wire carrying the current I. The 
contribution d𝐵𝐵 of the infinitesimal element d𝑙𝑙 is 

P 
α 

0 0
24

I dl rdB
r

µ
π

×
=







where 𝑟𝑟0 is a unit vector in the direction of 𝑟𝑟  and r = 𝑟𝑟 .  

The magnitude of d𝐵𝐵 can be expressed by 0
2

sin
4

I dldB
r

µ α
π

=

To be able to determine the magnetic 
induction 𝐵𝐵 at P due to the whole wire, we 
have to integrate along the entire length l. ( )l

B dB= ∫
 

0
34

I dl rdB
r

µ
π

×
=







or 



Application of Biot-Savart Law – long straight wire 

-l 

r R 

𝑟𝑟0 

Determine the magnitude of 
𝐵𝐵 at a distance R from the 
center of a long cylindrical wire 
carrying a current I.  

0
2

sin
4

I dldB
r

µ
π

Θ
= 𝑑𝑑𝑙𝑙 

0
2

sin
4

I dlB
r

µ
π

+∞

−∞

Θ
= ∫ 2

cos; cot ;
sin sin sin

R Rr l R g R dl dΘ
= = − Θ = − = Θ

Θ Θ Θ

2
0 0

2 2
0 0

sin sin sin
4 sin 4

I IRB d d
R R

π πµ µ
π π

Θ
= Θ Θ = Θ Θ

Θ∫ ∫

[ ]0
0

cos
4

IB
R

πµ
π

= − Θ 0

2
IB
R

µ
π

=



Application of Biot-Savart Law – circular wire 

Determine the magnitude of 𝐵𝐵 on 
the axis of circular loop of radius 
R carrying a current I.  

Vertical component dBx is compensated by the element on the 
opposite side of the ring, so only horizontal component dBz=dBsinΘ 
can be taken into account.  

0
24

I dldB
r

µ
π

=

d𝐵𝐵 

dBz 

dBx 

I 

P 

R R 
dφ 

dl 

; ;
sin

Rdl Rd rϕ= =
Θ

22
30 0 0

2 2
0

sinsin sin sin
4 4 4l l

I I Idl RdB d
r R R

πµ µ µϕ ϕ
π π π

Θ
= Θ = Θ = Θ∫ ∫ ∫

0
2 sin

4z
I dldB

r
µ
π

= Θ

30 sin
2

IB
R

µ
= Θ



30 sin
2

IB
R

µ
= Θ

Application of Biot-Savart Law – circular wire 

We found the formula for the magnitude of 
magnetic induction.  

If we realize that the sin Θ can be expressed as 
2 2 1/2sin

( )
R

z R
Θ =

+
we can rewrite the result  2

0
2 2 3/22 ( )

I RB
z R

µ
=

+

A graph for I= 1A, R= 5cm  
Important points and limits 

0 0
2
0

IB for z
R

B for z

µ
= =

= →∞



Magnetic Force Between Wires 

𝐵𝐵 
𝐹⃗𝐹1 
𝐹⃗𝐹2 

The magnetic field of an infinitely long straight 
wire carrying I1 can be obtained by applying 
Ampere's law. 

0 1
1 2

IB
r

µ
π

=

A force exerted on the wire 
with I2 can be obtained as 
the Lorentz force.  1( )F I dl B= ×∫


 

Taking into account that 𝐵𝐵 and 𝑑𝑑𝑑𝑑 are always 
perpendicular to each other, we can simplify to 
the relation of the force on length L.  

0 1
2 1 2 2

IF I LB I L
r

µ
π

= =

I𝑑𝑑𝑑𝑑 

0 1 2

2
I I LF

r
µ

π
=

We can see by the screw rule or right hand rule that parallel current 
causes attractive force and antiparallel current causes repulsive force.  



Magnetic Force Between Wires 

The attraction between two long parallel wires is used to define the 
current 1 Ampere.  

If we have two parallel wires 1 meter apart and the currents I1 and I2 
are equal and of the same direction, then the current causing the 
attractive force F= 2×10-7 N/m is defined to be 1 Ampere.  

The magnetic force and knowlegde of it is very important in the power 
circuit design, especially for the cable installation and fixation.  

Let us suppose, that there is a device powered by two DC cables (plus 
and minus) and in case of short circuit the current flowing through 
cables would be 30 kA. If the cables are installed parallelly 5 cm apart, 
then the repulsive force between them would be 3600 N per one meter 
of length!!  



Electromagnetic Induction 

Let us consider a conductor (a bar) placed 
in a uniform magnetic field 𝐵𝐵. If we set the 
conductor in motion with velocity 𝑣⃗𝑣 
perpendicular to its own length and to the 𝐵𝐵, 
charged particles in the conductor will 
experience the Lorentz force 

𝐵𝐵 

𝑣⃗𝑣 

( );F q v B F q vB= × =
 



This force pushes positive charges up and 
negative charges down.  

Electrons begin to collect at the bottom part of the conductor leaving 
the upper part positive. This charge accumulation generates an electric 
field which acts in the opposite direction by its force. The charge 
accumulation continues until a balance between electrostatic and 
magnetic forces is established.  

𝐸𝐸 

( )qE q v B= ×
 

 E v B= ×
 

The electric field is 
then given by  



Electromagnetic Induction 

The moving conductive bar slides 
with the velocity 𝑣⃗𝑣 along a U-shaped 
conductor with resistor R. Due to the 
generated electric field the current I 
is established through the R. The 
current loweres the accumulated 
charge while the magnetic force 
accumulates another charge at the 
ends if the motion is maintained.  

𝐵𝐵 𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑 

𝑣⃗𝑣 

𝐹⃗𝐹m 𝐹⃗𝐹𝑒𝑒𝑒𝑒𝑒𝑒 

The force exerted by the magnetic field on 
the conductor is mF I lB=

An external force maintaining the motion 
must have the same magnitude and 
opposite direction 

extF I lB= −

The distance traveled by the conductor in 
time dt is 

ds v dt=

The elementary work done by the external 
force is  

extdW F ds I lBv dt= = −



Electromagnetic Induction – Faraday’s Law 
𝐵𝐵 𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑 

𝑣⃗𝑣 

𝐹⃗𝐹m 𝐹⃗𝐹𝑒𝑒𝑒𝑒𝑒𝑒 

The product Iˑdt represents an 
elementary charge dq, so 

dW Blv dq= −

The induced electromotive force is 
dW
dq

ε = Blvε = −

a 

b 

d 

c 

When the conductor is moving to the 
right, the area of a-b-c-d increases by  

Bd BdS Bldsφ = =The change in magnetic flux is then  

dS lds=

The induced emf is given by 
ds BdS dBl
dt dt dt

φε = − = − = −

The last term forms the Faraday’s law d
dt
φε = −

[ ]V



Magnetic Induction – Faraday’s Law 

The Faraday’s law can be also written in 
more general form. The emf can be 
written as 

E dlε = ⋅∫






In combination with 
previous formulae 

dE dl
dt
φ

⋅ = −∫






and finally 

dE dl B dS
dt

⋅ = − ⋅∫ ∫∫
  



This general form is also known as second Maxwell’s equation. The 
emf will be present regardless the cause of the magnetic flux change. 
The flux can be changed by moving a loop or a coil in the stationary 
magnetic field, by moving a permanent magnet, by changing the 
magnetic induction, by changing the shape of the loop etc.  

We could see in the previous that the magnetic force 𝐹⃗𝐹m caused by the 
induced electric current was in the opposite direction than the force 
𝐹⃗𝐹ext causing the motion. This is the principle of the Lenz’s law stating 
that the direction of induced current is such as to oppose the cause 
producing it.   



Self Inductance 

𝐵𝐵 

l 

I 

We have a closed loop l carrying a 
current I.   

Magnetic flux ΦB through a surface S 
surrounded by the loop is given by S 

B
S

B dSφ = ⋅∫∫


Magnetic induction at a given point is 
according to the Biot-Savart law 

0
24 l

dl rIB
r

µ
π

×
= ∫









By combining of the two previous 
equations we obtain  

0
24B

S l

dl rI dS
r

µ
π

×
Φ = ⋅∫∫ ∫









If we substitute  0
24S l

dl rL dS
r

µ
π

×
= ⋅∫∫ ∫









we can write  B LIφ =

The quantity L is called self-inductance and it depends on the 
geometry of the wire and on the permeability of the environment.  



Self Inductance 

A unit of the self-inductance is Henry [H] 
and can be expressed as  

Wb V sH
A A

⋅
= =

If the current passing through the loop varies in time then the magnetic 
flux varies as well and induces an emf, which opposes the original 
current. The value of emf induced in the loop is 

( )Bd d dILI L
dt dt dt
φε = − = − = −



Mutual Inductance 

Now we have two loops placed near each 
other. The emf ε2 induced in the loop 2 is 
proportional to the rate of change of the Φ21, 
which is due to the current I1 in the loop 1.  

Φ1 

Φ21 

21
21

1

M
I
φ

=
If the loops are fixed in space then 
the Φ21 is proportional to the I1, 
which can be written as 

The proportionality constant M21 is called mutual 
inductance and its unit is also Henry [H].   

The emf induced in the second coil is 21 1
2 21

d dIM
dt dt
φε = − = −

Similar relation can be written for the situation 
when the loop 2 carries a current I2 and we want 
to express the emf ε1 in the loop 1.  

2
1 12

dIM
dt

ε = −

The mutual inductance is symmetrical, so  21 12M M M= =

I1 

2 

1 



Magnetic Field Strength and Magnetization 

Let us discuss the situation when the magnetic field is present in an 
environment different from vacuum, which was characterized by the 
permeability of vacuum μ0. As we have elementary electric dipoles, 
there exist also elementary magnetic dipoles.  

We have a torus carrying a current 
I0 with iron core and designed so 
that the core could be removed. A 
hypothetical slice out the core has 
a magnetic dipole moment 𝑑𝑑μ as a 
sum of all elementary dipoles in it. 

The vector of magnetization 
is defined as 

dM
S dl
µ

=
⋅



 where S·dl is a volume of 
the slice 

If we remove the iron core, the magnetic induction  B inside the torus 
will significantly decrease for the same current I0. We would have to 
increase the current by an amount IM to compensate the drop and to 
achieve the former magnitude of B.  



Magnetic Field Strength and Magnetization 

We can see that the Ampere’s law is not valid in the previously written 
form for the materials with magnetization and it must be modified to  

For our torus it can be rewritten to 

I Sµ =

0 0( )MB dl I Iµ⋅ = +∫






0 0 02 ( )MB r NI NIπ µ⋅ = +

where N is the number of turns. 

We already know that the dipole moment magnitude is  

For the coil with N turns it is  NI Sµ = ( )d d NI Sµ =or 

Using the definition of M  

0

( ) )
2 M
dlM S dl N I S

rπ
 

⋅ =  
 

where the term in the brackets means number of turns associated 
with the slice dl. 

[1] 



Magnetic Field Strength and Magnetization 

The last equation can be simplified to 

In more general 
form it is 

0 0B H Mµ µ= +
  

02MNI M rπ=

Substituting into the equation [1] 
we obtain  0 0 0 0 02 2 )B r NI M rπ µ µ π⋅ = +

0 0B dl I M dlµ µ⋅ = + ⋅∫ ∫
 

 

 

0

0

B M dl Iµ
µ
−

⋅ =∫
 





Here we can define the vector of 
magnetic field strength 𝑯𝑯.  0

0

B MH µ
µ
−

=
 



Now we can write the Ampere’s law in more simple form valid also for 
magnetic materials.  

A
m
 
  

H dl I⋅ =∫








Permeability of Materials 

As we have relations between permitivities for the electrostatic field, we 
have similar relations between permeabilities for the magnetic field.  

0rµ µ µ=Permeability of a material can be expressed as 

where is μr is dimensionless relative permeability.  

The relationship between magnetic vectors can be written also as 

0rB H Hµ µ µ= =
  

( 1)rM Hµ= −
 

According to the relative permeability we can divide magnetic materials 
into three categories:  

Diamagnetics – (μr<1, slightly). They create weak magnetic field 
opposite to an externally applied magnetic field.  

Paramagnetics - (μr>1, slightly). They are weakly attracted to magnetic 
field. Magnetization disappears without external field.  

Ferromagnetics - (μr>>1). Strong magnetization, which retains even 
after turning the external field off. They can form permanent magnets.  



Permeability of Materials 

Material Relative 
permeability μr 

Bismuth 0.999834 
Water 0.999992 
Copper 0.999994 
Vacuum 1 
Air 1.00000037 
Aluminum 1.000022 
Platinum 1.000265 
Nickel  100-600 
Carbon steel 100 
Iron (99.8%) 5 000 
Iron (99.95%) 200 000 

Comparison between permeabilities 
of diamagnetics, paramagnetics, 
ferromagnetics and vacuum 



Energy Stored in Magnetic Field 

Let us examine a simple circuit 
consisting of resistor R, inductor L, 
switch S and DC voltage source Vs. 
When we turn the switch on, the 
current I starts to rise gradually. 

Imax s R LV V V= + s
dIV RI L
dt

= +

If we multiply both sides by I, we obtain 

2
s

dIV I RI LI
dt

= +

The term VsI expresses the rate at which the source delivers energy to 
the circuit. 

The term RI2 expresses the thermal energy in the resistor. 

The term LI 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 represents the energy of the magnetic field of the coil.  

The equation for the voltages is then  



Energy Stored in Magnetic Field 

The rate of change of the coil magnetic field 
energy Um can be written as 

The total magnetic energy stored in an 
inductor is 

mdU dILI
dt dt

=

This can be 
simplified as  mdU LIdI= By integration 

we obtain 

mI
2

m
0

1 I
2mU LIdI L= =∫

2
m

1 I
2mU L=

Let us deduce the formula for Um with magnetic 
field vectors. We have a straight wire carrying 
the current I and around it we chose circular 
flux tube with cross section S. We know that 

B LIφ = so 
1
2m BU Iφ=

S 



Energy Stored in Magnetic Field 

The amount of flux enclosed by 
the tube is Bd B dSφ = ⋅



we obtain 

1
2m BdU I dφ=

S 

where 
0dS dS n= ⋅





The magnetic field energy 
enclosed in the elementary 
volume dV is 

Using the 
Ampere’s law H dl I⋅ =∫






1
2mU H dl B dS= ⋅ ⋅∫ ∫∫

  



Realizing that dl dS dV⋅ =
 

we obtain 
1
2m

V

U H B dV= ⋅∫∫∫
 

We can now define energy 
volume density 3

m
m

dU Jw
dV m

 =   

1
2mw H B= ⋅
 

2
0

1
2mw Hµ=0B Hµ= ⇒

 



Summary – what we have learnt 

0 ;B dl I H dl Iµ⋅ = ⋅ =∫ ∫
 

 

 

2
0

1 1;
2 2

w H w H Bε= = ⋅
 

0 0;rB H B H Mµ µ µ= = +
    

Lorentz force 

Gauss’s law for magnetism 

Ampere’s law 

Biot-Savart law 

Relations between magnetic induction, 
magnetic field strength and magnetization 

Energy stored in an inductor 

Energy density of magnetic field 

( )F qE q v B= + ×
  



0
S

B dS⋅ =∫∫




0
34

I dl rdB
r

µ
π

×
=







dE dl B dS
dt

⋅ = − ⋅∫ ∫∫
  



2
m

1 I
2mU L=

Faraday’s law 



Application of Ampere’s Law – field inside and around a wire 

A long straight cylindrical wire of radius R 
carries a current I uniformly distributed in the 
cross section area. Determine the magnetic 
field strength H inside (r<R) and outside (r>R) 
the wire.  

a) r>R, we can use Ampere’s 
law  H dl I⋅ =∫






We can simplify it for concentric arrangement 

2H r Iπ⋅ =
2

IH
rπ

=

b) r<R, inside the wire we are not 
surrounding the entire current I, but only a 
part of it I’, which will be used in te Ampere’s 
law  

2 2

2 2

I r r
I R R

π
π

′
= =

2

22 ;
2 2
I I rH r I H

r r R
π

π π
′

′⋅ = = = 22
I rH

Rπ
=

𝐵𝐵 

𝐵𝐵 



Application of Ampere’s Law – field inside and around a wire 

2
IH

rπ
=

22
I rH

Rπ
=

We have found relations for the magnetic field strength inside and 
outside the wire.  

r<R 

r>R 

R 0 

𝐵𝐵 

𝐵𝐵 

H 

r 



Example – Solenoid 
Determine the magnetic induction inside very long solenoid of cross 
sectional area S, length l, number of turns N carrying current I. 
Determine also relation for its self inductance.   

S 

We will use 
Ampere’s law.   0B dl Iµ⋅ =∫






b c d a

a b c d

B dl B dl B dl B dl B dl⋅ = ⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫ ∫
    

    



The magnetic field outside long solenoid can 
be considered zero. Integral a-b is then zero.  

The 𝐵𝐵 is perpendicular to the 𝑑𝑑𝑑𝑑  on sections b-c and a-d, so the 
integrals are also zero. The entire integral reduces to   

0;
d

c

B dl B dl B l B l N Iµ⋅ = ⋅ = ⋅ ⋅ =∫ ∫
 

 



0N IB
l

µ
=

The total current enclosed by the loop is NI because the loop encloses 
N turns with current I each. The field inside is homogeneous.  



Example – Solenoid 
We already know the relation for magnetic flux LIφ =

In case of a coil we have to count magnetic flux 
through all turns 

N LIφ =

For the constant B we can write  B Sφ = ⋅ so N B S LI⋅ =

Substituting expression for B 0N IN S LI
l

µ
=

The self inductance of solenoid is 
2

0N SL
l

µ
=

Example: N=100, d= 1 cm, l= 20 cm 

Air core of the solenoid: L= 4.9 μH,  

Metal core (μr= 4000) of the solenoid: L= 19.7 mH 



Example – Square Loop 
Calculate the magnetic induction B in the middle of a square loop 
carrying a current I= 30 A. Side of the loop a= 10 cm.  

𝐵𝐵 

𝑑𝑑𝑑𝑑 𝑟𝑟0 

r α 

We will divide the loop into eight parts 
of length a/2. Contribution to the total B 
of one such part will be B’. Due to the 
symmetry are contributions of each part 
in the middle of the square identical in 
magnitude and direction. Elementary 
contribution of the element 𝑑𝑑𝑑𝑑 is 

0 0
24

I dl rdB
r

µ
π

×
=





 0
2

1 sin
4

IdB dl
r

µ α
π

= ⋅

We will use substitutions 

a/2 

2
2 2; cot ;

sin 2 sin

a a
ar l g dl dα α

α α
= = − =



Example – Square Loop 

2
0 0 0

22 2

1 sin 2sin sin sin
4 4 sin 2

2

a
I I IdB dl d d

r aa
µ µ µαα α α α α
π π α π

= ⋅ = ⋅ = ⋅
 
 
 

Due to the substitution we obtain 

Contribution of one a/2 part is 

[ ]
/2

/20 0 0 0
/4

/4

22sin cos
2 2 2 2 4

I I I IB d
a a a a

π
π

π
π

µ µ µ µα α α
π π π π

′ = ⋅ = − = =∫

The total magnetic induction is 02 28 IB B
a
µ

π
′= =

Numerical result for given 
values I=30 A, a= 10 cm  0.34B mT=
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