Physics 1

Magnetic field
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Magnetic Field

A magnetic field is a vector field that describes the magnetic influence
of electric charges in relative motion and magnetized materials.

Magnetic fields are produced by electric currents, which can be

macroscopic currents in wires, or microscopic currents associated with
electrons in atomic orbits.
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Magnetic Field, Definition of B

If we place a test charge g in the electric and magnetic field, the force
acting on the charge will have two components.

Electric force, which depends only on the electric field and is
independent on the motion of the charge. The electric force is also
straightforward.

Magnetic force, which depends on the magnetic field and on the
velocity of the charge. The magnetic force is also at the right angles
with the velocity.

To be able to describe the magnetic force, let us define the magnetic
induction B. The unit of B is Tesla. 1T= Wb _ 1N

m?2 A'm

Older, but still frequently used unit is Gauss; 1T= 10 000 G

The electromagnetic force acting on the charge q is called Lorentz
force and can be written as

F=F +F =qE+q(¥xB)




Magnetic Field, Definition of B

| Neorth magnetic pole |
N

o ﬁ Q0. 9 o
F.=qE iF‘? %Fe J’ﬁ F.=q (7 x B)
| S |

Since the magnetic force is always at right angles with the direction of
motion, then the work done on the particle is always zero.

This means that the static magnetic field cannot change the kinetic
energy of the particle, it can only change the direction of motion.

How to determine the direction of magnetic force F,_?

We can use either a right hand rule or a screw rule.



Direction of Magnetic Force

Right hand rule Screw rule
Point thumb in direction of - 5 —
Curl fingers as if velocity, fingers in magnetic F m: q (v X B)

rotating vector v into field direction. Then palm
vector B. Thumb is in direction is direction of

—- -
the direction of force. F — qﬁ X B force on charge.

South S =
=
pole of =
magnet = =,
F Z.
m e
=
=
North =
__1 J'l'l.-
pole of =
magnet 1})
- >

ool

Force is in direction Force direction is
— that thumb points. outward from palm.

If we are looking for the direction of a vector resulting from a vector
product, it is obvious that the resulting vector is perpendicular to the
plane where the vectors in product are positioned.

Screw rule — if we rotate a right handed screw in the direction from the
first vector to the second one by the shortest way, the screw will move

in the direction of resulting vector.



Examples of magnetic field strength

Source B
Magnetic field of Earth (0° lat, 0° lon) 32 uT
Refrigerator magnet omT
Solar sunspots 03T
Surface of a neodymium magnet 1.25T

Coil gap of a loudspeaker magnet 1-25T
Superconducting electromagnets upto40 T

White dwarf star 100 T
Magnetar neutron stars 108 —10M" T



Magnetic Field Lines

Similarities to electric lines

1.

A line drawn tangent to a field line is the direction of the B at that

point.

2. The density of field lines still represent the strength of the field

Differences

1.

The magnetic field lines do not
start and do not terminate on
anything. They form closed loops.
There is no magnetic analog of
electric charge.

They are not perpendicular to the
surface of the ferromagnetic
material.

They do not stop on the surface of
ferromagnetic material
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Magnetic Field Lines
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Magnetic Flux

Similarly to the electric field we can define the magnetic flux.

®, =[[B-dS [wb]

A unit of magnetic flux is Weber [WDh].

As far as the magnetic field lines make closed loops and there is no
magnetic charge, all field lines entering a closed surface must also
leave it. We can define a Gauss’s law for the magnetic field.

The magnetic flux through a closed surface
equals to zero.

<j§]’>z§.d§=o
S

This is also known as fourth Maxwell’s
equation




Magnetic Force on a Current

An electric current can be understood as a set of moving electric
charges. If the magnetic field exerts a force on a moving charge, then
it also exerts force on a wire carrying electric current.

Let us define a differential

element of a wire of length
|di| carrying a steady current /

and placed in magnetic field (@& @ @ @ L+ ()
B. The vector di indicates the L 1
dl /

direction of the current flow.

The elementary magnetic force is dF = dQ(V x B)

From the definition of current and dO=1-dt; v :ﬂ
velocity we can write ’ dt
The elementary force is then dF = I(a’f x B)

The total force acting on a

conductor of the length /: I = !](dl x B)




Torque on a Current Loop

We have a rectangular loop of height h and length / in a uniform field B.
The loop carries a current / and it can rotate about an axis x — x'.

The orientation of the loop with respect to the B is given by an angle a
between B and the vector n, of the normal to the loop.

Top view

Side view

Using previously deduced formula we can see that

Siy
: F =j1(dix1§)
[

the forces due to arms 1-2 and 3-4 are equal in magnitude and in
opposite directions so they compensate each other — no net force.
They also have the same line of action so there is no net torque.

F12:F34:1.1-Bsin(§—a)



Torque on a Current Loop

Top view

Side view

Y

fon o
:X

Forces ﬁ41 and ﬁ23 have the same magnitude, opposite directions and
they do not act along the same line, so there is no net force but they
produce a torque ..

—

qu:FB:F:]'h'B fm=iXF

v =l-Fsina=I[(/hB)sma=I1(lh)Bsma=1S§ -Bsina

where S= [ h is the area of the loop. We can now define a magnetic
dipole moment of the loop:

[i=1Si,




Torque on a Current Loop

The formula for the torque can be further rewritten in the scalar and
vector form:

v =1S-Bsina=u-Bsina 7 =jxB

We will assume that the magnetic potential energy U is zero when |

and B are at right angles (a=90°). The potential energy is equal to
work W to rotate the dipole from zero position to a.

U=W = j T do = _[ ISBsina da =yBj sinada =—uBcosa
90° 90° 90°

In vector form U=—ji-B

This relation is equivalent to the energy of electric dipole U =-p E



Charged Particle in Magnetic Field

We will examine now what happens when a
positively charged particle (Q) enters a magnetic B®

y
, Q
field with initial velocity v perpendicular to the B.

Let us assume for the initial time =0
X,=y,=2,=0; ¥,=(v,.,0,0); B=(0,0,B)

According to the Lorentz force and Newton'’s laws N

R . N d277 B @ @§
F=0WxB); OWxB)=m %
Since the 7 and ¥ have only x and y mx=Qv B=0yB

components, we can simply decompose to . B :
x and y components. my=-Qv B=-0xB

0

| 0
After the time integration we obtain x==yB+v,; y=——xB
m m



Charged Particle in Magnetic Field

For the magnitudes of velocity we can write

(o) 8 (%
m m m

12y 28 2 0= 22 2 X +(y+ﬂj2:(ﬂj2
2087 o8 OB 08) |\ 0B

This is an equation of a circle with radius R | o _ Vo,

shifted on the y axis by y..

The period of revolution and
frequency called cyclotron
frequency can be expressed as

Example: for an electron entering
the field B= 0.1T with velocity v=104
m/s we have

- 2 2 2
XT+y =vh o v=y,,

2
j y +2@yv+v +(QBJ x> =’

m

m

. - mVOx

OB’ Ve OB
T:27ZR:27zm; r= OB
Vo, OB 27rm
f=28GHz; R=0.57um



Ampere’s Law

An experiment with iron sawdust placed
on a piece of paper around a wire
carrying electric current perpendicular
to the paper shows us that the force
lines of magnetic field are circular with
the center at the position of the wire.

A e §em
oL

Another experiments found that the magnetic induction is

directly proportional to the current / flowing through the wire

and inversely proportional to the distance r from the wire.

The constant of proportionality was defined as

where p, is permeability of vacuum.

t, =4xx107 H/m

The complete relation for the magnetic
induction around the wire is

Ho

2T
B — ILIOI
2mr

B ~—




Ampere’s Law

The previously found formula is valid
only for the symmetrical circular
arrangement. The Ampere’'s law
describes more general situation. Let
us consider any closed path around
the conductor.

Let us determine the length integral C_‘SE -dl

We can see from the figure dicosa=rdo

E-dizBdlcosazBrdgo

@E-diz(JSBrdgo:T;;irdgo:yol
0

Using the known formula for B.

So the Ampere’s law is qsg-di = u,l

It is also known as the first Maxwell equation



Biot-Savart Law

The Ampere’s law could become difficult to apply
in case of more complicated shapes of the wire.
For these cases we have a magnetic equivalent
of Coulomb’s law named Biot-Savart law.

We will examine the magnetic induction at the
point P around the wire carrying the current /. The

contribution dB of the infinitesimal element dl is

. | 7 . I dl <7
I - U, dl xr, or g5 - Ho dl jr
A 1’ A r

where 7, is a unit vector in the direction of ¥ and r =|7|.

M disina

The magnitude of dF can be expressed by dB 1 >
T T

To be able to determine the magnetic

induction B at P due to the whole wire, we B=|dB
have to integrate along the entire length /. (1)



Application of Biot-Savart Law — long straight wire

Determine the magnitude of Y
B at a distance R from the
center of a long cylindrical wire B /o
carrying a current /. r/ R
1,1 dlsin® A Tog 0\ | R
dB = ; T oAl a0
4 r "
B:’UOI J. d/sin©® r= _R ; l:—Rcotg@):—RCf)S@; dl = IE d®
A - 72 sin ® sin ® sin” ©
[ sin’@® R I7.
B=*h _[S —sin®@——d0O = Ho _[sm@d@
A7 5 R sin” ©® A7 R
1 7 1
B =2t [-cos®] B =2t
4rR 2R




Application of Biot-Savart Law — circular wire

Determine the magnitude of Bon  d {I_Tx I,
the axis of circular loop of radius °N
R carrying a current /. ' RIT ™

dB:“_O]izl
4 r

O

Vertical component dB, is compensated by the element on the
opposite side of the ring, so only horizontal component dB,=dBsin®©

can be taken into account.

Ji . R
dB. &ﬂsm@ dl=Rdp;, r=——r;
4 r* sin ®

B:’u‘) J‘dlsin@ ! J-sm ®Rd¢sm® ! sin @jd(p

A~ r dr - R’ 4rR

B lLlOI
2R

0" 5in’ @




Application of Biot-Savart Law — circular wire

We found the formula for the magnitude of Bzﬂsiﬁ@
magnetic induction. 2R

R

If we realize that the sin © can be expressedas  sin® =
(ZZ _I_R2)1/2

we can rewrite the result | o _ f4] R’
9) (ZZ +R2)3/2

A graph for I= 1A, R= 5cm
Important points and limits

14 -

12 A
J Ji
=] B =t for z=0
2 2R
2—: B:O fOI/' Z —> 0
0 —

z[m]



Magnetic Force Between Wires

The magnetic field of an infinitely long straight

wire carrying /, can be obtained by applying

Ampere's law. o 11, §
1 — Electric

27[7' current

A force exerted on the wire
with /, can be obtained as g :jl(dfxé)
the Lorentz force. :

‘ Magnetic
tlle
Taking into account that B and di are always

perpendicular to each other, we can simplify to
the relation of the force on length L.

I ILL
F=ILB =112 |p=fih>
2rr 2y

We can see by the screw rule or right hand rule that parallel current
causes attractive force and antiparallel current causes repulsive force.



Magnetic Force Between Wires

The attraction between two long parallel wires is used to define the
current 1 Ampere.

If we have two parallel wires 1 meter apart and the currents |, and |,
are equal and of the same direction, then the current causing the
attractive force F= 2x107 N/m is defined to be 1 Ampere.

The magnetic force and knowlegde of it is very important in the power
circuit design, especially for the cable installation and fixation.

Let us suppose, that there is a device powered by two DC cables (plus
and minus) and in case of short circuit the current flowing through
cables would be 30 KA. If the cables are installed parallelly 5 cm apart,
then the repulsive force between them would be 3600 N per one meter
of length!!



Electromagnetic Induction

Let us consider a conductor (a bar) placed . Y
in a uniform magnetic field B. If we set the o M e
conductor in motion with velocity ¥ s R
perpendicular to its own length and to the B, . % Loy
charged particles in the conductor will - : g
'-_E L —"

experience the Lorentz force

ﬁzq(ﬁx}?); F=qgvB

This force pushes positive charges up and
negative charges down.

Electrons begin to collect at the bottom part of the conductor leaving
the upper part positive. This charge accumulation generates an electric
field which acts in the opposite direction by its force. The charge
accumulation continues until a balance between electrostatic and
magnetic forces is established.

. = The electric field is
qE =q(vxB) then given by

E =V xB




Electromagnetic Induction

The moving conductive bar slides

with the velocity v along a U-shaped © O 0 0,
conductor with resistor R. Due to the '
generated electric field the current / ;
is established through the R. The ®3® ® _ ® |
current loweres the accumulated | Fa—
charge while the magnetic force - = :
accumulates another charge at the @ © © ©. 070 o
ends if the motion is maintained. ~ds™

The force exerted by the magnetic field on F =1IB
the conductor is "

An external force maintaining the motion

must have the same magnitude and F,, =-1IB
opposite direction
The distance traveled by the conductor in ds = vdt

time dtis

The elementary work done by the external dW =F, ds=-IIBvdt
force is



Electromagnetic Induction — Faraday’s Law

The product /dt represents an

elementary charge dg, so . » ’;Lx
dW =—-Blvdg = = e
The induced electromotive force is ®D  ® 32
dw @ ® @ @ ¢
=" [F=2Bh] 7] | g
dq ®@ © ®© o

When the conductor is moving to the ;¢ _; ¢
right, the area of a-b-c-d increases by

The change in magnetic flux is then d¢, = BdS = Blds

. . ds BdS do
The induced emf is given by c=—Bl—=———=——_
dt dt dt

The last term forms the Faraday’s law £ = _ﬁ
dt




Magnetic Induction — Faraday’s Law

We could see in the previous that the magnetic force F_ caused by the
induced electric current was in the opposite direction than the force

ﬁext causing the motion. This is the principle of the Lenz’s law stating
that the direction of induced current is such as to oppose the cause
producing it.

The Faraday’s law can be also written in o= CJSE-df
more general form. The emf can be

written as
and finally

. . . _ _ d
In combination with <j>E-a’ _ _7415
4

previous formulae CﬁE'di - _%“‘E -dS

This general form is also known as second Maxwell’s equation. The
emf will be present regardless the cause of the magnetic flux change.
The flux can be changed by moving a loop or a coil in the stationary
magnetic field, by moving a permanent magnet, by changing the
magnetic induction, by changing the shape of the loop etc.



Self Inductance

We have a closed loop / carrying a ]
current /.

Magnetic flux @z through a surface S

surrounded by the loop is given by 2
- J‘J‘E . dg o 4[
g B
Magnetic induction at a given point is B = 'LlIC_’Sd XF
according to the Biot-Savart law 4 - r?
By combining of the two previous J‘ Cﬁ XF . dS
2

equations we obtain

—

—

dl xF
If we substitute L = H 4,u (_f) - .45 wecanwrite |¢=LI

; r

The quantity L is called self-inductance and it depends on the
geometry of the wire and on the permeability of the environment.



Self Inductance

A unit of the self-inductance is Henry [H] Wh V-s
and can be expressed as H = y - y

If the current passing through the loop varies in time then the magnetic
flux varies as well and induces an emf, which opposes the original
current. The value of emf induced in the loop is

__9 G S
dt i dt




Mutual Inductance

Now we have two loops placed near each
other. The emf ¢, induced in the loop 2 is
proportional to the rate of change of the @,,,
which is due to the current /, in the loop 1.

If the loops are fixed in space then
the @,, is proportional to the /., M, :ﬁ
which can be written as I,

The proportionality constant M,, is called mutual
inductance and its unit is also Henry [H].

The emf induced in the second coil is £, =— dgy, =-M,, ﬂ
dt dt
Similar relation can be written for the situation dI
2

when the loop 2 carries a current /, and we want ¢, =-M

“u
to express the emf ¢, in the loop 1. ¢

The mutual inductance is symmetrical, so M, =M,=M



Magnetic Field Strength and Magnetization

Let us discuss the situation when the magnetic field is present in an
environment different from vacuum, which was characterized by the
permeability of vacuum p,. As we have elementary electric dipoles,
there exist also elementary magnetic dipoles.

We have a torus carrying a current
I, with iron core and designed so
that the core could be removed. A
hypothetical slice out the core has

a magnetic dipole moment du as a /
sum of all elementary dipoles in it. bowiecrs

The vector of magnetization 7 du  where Sdlis a volume of
is defined as S.dl the slice

If we remove the iron core, the magnetic induction B inside the torus
will significantly decrease for the same current /,. We would have to
increase the current by an amount /,, to compensate the drop and to
achieve the former magnitude of B.



Magnetic Field Strength and Magnetization

We can see that the Ampere’s law is not valid in the previously written
form for the materials with magnetization and it must be modified to

C“‘)Bdi = oIy +1,,)
For our torus it can be rewritten to

B-2xry = u,(NI,+NI,,) [1]

where N is the number of turns.

We already know that the dipole moment magnitude is u=18
For the coil with N turns it is u=NIS or du=d(NIS)
dl

7

Using the definition of M

M(S-dl):(N ]IMS)

where the term in the brackets means number of turns associated
with the slice dl.



Magnetic Field Strength and Magnetization

The last equation can be simplified to NI,, = M2rr,

Substituting into the equation [1] B 2xr = u NI + uM?2
we obtain 7o = Holo + M 270
In more general 5T YTl E—ﬂoﬂ, 7 _
form it is C—’SB al _,u01+,uO<ﬁM “ C“S Hy a=t
Here we can define the vector of | _ g_ﬂ M|l T4
magnetic field strength H. H = u : ;}
0 |
B=p H+u M

Now we can write the Ampere’s law in more simple form valid also for
magnetic materials.

<j>1§-d7=1




Permeability of Materials

As we have relations between permitivities for the electrostatic field, we
have similar relations between permeabilities for the magnetic field.

Permeability of a material can be expressed as U= L U,

where is u. is dimensionless relative permeability.

The relationship between magnetic vectors can be written also as

B=pH = p i, H M =(u, —-1)H

According to the relative permeability we can divide magnetic materials
into three categories:

Diamagnetics — (y,<1, slightly). They create weak magnetic field
opposite to an externally applied magnetic field.

Paramagnetics - (u>1, slightly). They are weakly attracted to magnetic
field. Magnetization disappears without external field.

Ferromagnetics - (u>>1). Strong magnetization, which retains even
after turning the external field off. They can form permanent magnets.



Material

Bismuth
Water
Copper
Vacuum

Air
Aluminum
Platinum
Nickel
Carbon steel
Iron (99.8%)
Iron (99.95%)

Permeability of Materials

Relative
permeability p, A

0.999834
0.999992
0.999994

1 Mp /u' 0
1.00000037 Md
1.000022
1.000265 H

100-600

100 Comparison between permeabilities
of diamagnetics, paramagnetics,
5 000 ferromagnetics and vacuum

200 000




Energy Stored in Magnetic Field

Let us examine a simple circuit
consisting of resistor R, inductor L,
switch S and DC voltage source V..
When we turn the switch on, the
current / starts to rise gradually.

The equation for the voltages is then

VS:VR-I_VL Vs:R]—I_Lﬂ Ima>l('
dt ]
If we multiply both sides by /, we obtain
1
VI=RI"+ Lt
dt

t

The term V[ expresses the rate at which the source delivers energy to

the circuit.

The term RI? expresses the thermal energy in the resistor.

The term LI% represents the energy of the magnetic field of the caoil.



Energy Stored in Magnetic Field

The rate of change of the coil magnetic field du dl

energy U can be written as Jf = LIE

This can be _ By integration r 1 5

simplified as v, = Lldl we obtain U, = _[L]d] - ELIm
0

The total magnetic energy stored in an 1 X

inductor is U, = ELIm

Let us deduce the formula for U, with magnetic
field vectors. We have a straight wire carrying
the current / and around it we chose circular
flux tube with cross section S. We know that

¢, = LI SO U, :%IgzﬁB



Energy Stored in Magnetic Field

The amount of flux enclosed by

the tube is gy = B-d5 .
where dS = ds - i,
The magnetic field energy 1

enclosed in the elementary dU, =—1dg¢,
volume dV'is 2

. 1 ¢ o —pp— -
Using the 7. g = weobtain U =—¢H-dl||B-dS
Ampere’s law H-dl =1 " 24> ”
. - - . 1 — =
Realizingthat g/ .dS =dl)  we obtain U, = EHJ-H-BdV
V

We can now define energy I du, J
volume density "4V m’

1 — = - — 1 2

WmZEHB B:/,[OH p— WMZEILIOH




Summary — what we have learnt

Lorentz force

Gauss’s law for magnetism

Ampere’s law

Biot-Savart law

Relations between magnetic induction,
magnetic field strength and magnetization

Faraday’s law

Energy stored in an inductor

Energy density of magnetic field




Application of Ampere’s Law - field inside and around a wire

A long straight cylindrical wire of radius R
carries a current / uniformly distributed in the
cross section area. Determine the magnetic -~
field strength H inside (r<R) and outside (r>R)
the wire.

a) >R, we can use Ampere’s

o $H-dl =1
We can simplify it for concentric arrangement
1
H2nr=1 H=—
27Ty
b) r<R, inside the wire we are not I' zr* r
surrounding the entire current /, but only a I ~R> R>
part of it I, which will be used in te Ampere’s
law
I I Ir
H2rr=I; H=—= =
2zr  2xr R’ 27R




Application of Ampere’s Law - field inside and around a wire

We have found relations for the magnetic field strength inside and
outside the wire.

H Ir r<R

H=—— r>R




Example — Solenoid

Determine the magnetic induction inside very long solenoid of cross
sectional area S, length /, number of turns N carrying current /.
Determine also relation for its self inductance.

We will use
Ampere’s law. C_‘S

¢ B-dl =

The magnetic field outside long solenoid can
be considered zero. Integral a-b is then zero.

ol
<~

-dl = p, 1

Q '—-.@
Q“‘—'Q
o '—;Q..
_I_
Q ey Q
wol!
QU
|

il

The B is perpendicular to the dl on sections b-c and a-d, so the
integrals are also zero. The entire integral reduces to

qSBdi:TE-di:B-z; B-l=u,NI

B =

Ho N1
)

The total current enclosed by the loop is NI because the loop encloses
N turns with current / each. The field inside is homogeneous.



Example — Solenoid

We already know the relation for magnetic flux ¢=LI

In case of a coil we have to count magnetic flux Ng¢g=LI
through all turns

For the constant Bwe canwrite ¢=B-§ so NB-S=LI

NI
Substituting expression for B NE g1
The self inductance of solenoid is 7 ,uONZS
[

Example: N=100, d=1cm, /=20 cm

Air core of the solenoid: L=4.9 uH,
Metal core (u,= 4000) of the solenoid: L= 19.7 mH



Example — Square Loop

Calculate the magnetic induction B in the middle of a square loop
carrying a current /= 30 A. Side of the loop a= 10 cm.

We will divide the loop into eight parts
of length a/2. Contribution to the total B
of one such part will be B’. Due to the
symmetry are contributions of each part
in the middle of the square identical in
magnitude and direction. Elementary

contribution of the element di is

dB’:ﬂo
4 r 4z r

[ dl %7 I 1
o dB=

We will use substitutions

a
= l:—ﬁcotga; dl = 22
SIn & 2 SIn” &

v

——2$ina-dl

do




Example — Square Loop

Due to the substitution we obtain

a
. Isin’a . P I .
de'u—O]Lzsma-dlz'uo > (fsma- 22 da =" sing-da
A r A7 (a sin” o 2ra
2
Contribution of one a/2 part is
I17°¢ I . I N2 2u,l
B = o jsma-daz'uo [—cosa] Z:ﬂo \/_:\/_ﬂo
2ra 7, 27a d 2rwra 2 4rra

The total magnetic inductionis | p _gpr _ 2\/51%1
a

Numerical result for given —
values /=30 A, a= 10 cm B=0.34mT
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