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5 SPECIAL THEORY OF RELATIVITY

Physics at the end of the nineteenth century looked back on a period of a great progress.
The theories developed over proceeding three centuries had been very successful in
explaining a wide range of natural phenomena. Newtonian mechanics beautifully explained
the motion of objects on earth and in the heaven, furthermore, it formed the basis for
successful treatment of fluids, wave motion and sound. Kinetic theory on the other hand,
explained the behavior of gases and other materials.

Maxwell’s theory of electromagnetism not only brought together and explained electric and
magnetic phenomena, but it also predicted the existence of electromagnetic waves.

A few puzzles remained, but it was felt that these would soon be explained using already
known principles.

But it did not turn out so simply. Instead, these puzzles were only to be solved by
the introduction of two revolutionary new theories - the theory of relativity and quantum
theory. Now we shall deal with the special theory of relativity, which was first proposed by
Albert Einstein (1879-1955).

5.1 Galilean and Newtonian Relativity

Einstein's special theory of relativity deals with how we observe events, particularly how
objects and events are observed from different frames of reference. A reference frame is
a set of coordinate axis fixed to some body.

We will deal with so-called inertial reference frames. An inertial reference frame is one in
which Newton s first law, the law of inertia is valid. That is if an object experiences no net
force due to other bodies, the object either remains at rest or in motion with constant
velocity in a straight line. Rotating or otherwise accelerating frames of reference are non-
inertial frames.

So a reference frame that moves with constant velocity with respect to another inertial
frame is itself also an inertial frame.
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Figure 5-1

Now we examine in detail the mathematics of relating quantities in one inertial reference
frame to the equivalent quantities in another. In particular we will see how positions and
velocities transform from one reference frame to the other.

Let us consider two reference frames S and S’, see Fig.5-1. The x and x” axes overlap one
another. We also assume that frame S” moves to the right (in the x direction) at speed v
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with respect to reference frame S. For the sake of simplicity let us assume that the origins O
and O’ are superimposed at time ¢ = 0.

Now consider an event that occurs at some point P represented by the coordinates x”, . o
in reference frame S” at the time #". What will be the coordinates of point P in S reference
frame? Since S and S’ overlap precisely initially, after a time ¢, the frame S’ will have
moved a distance (vr’). Therefore, at time t” we can write

x=x"+uvt (5-1)
The y and z coordinates, on the other hand, are not altered by motion along the x-axis, thus
y=y and 2=z, (5-2)

Finally since time is assumed to be absolute in Newtonian physics, clocks in the two frames
will agree with each other, so r=1".
We summarize these in the following Galilean transformation equations:

x=x"+ut’ =y z=z =, (5-3)
These equations give the coordinates of an event in the S frame when those in the S’ frame
are given. If those in the S frame are known, then we can obtain very easily inverse
transformation:

x'=x-ut y=y z=z 1=t (5-4)

Now suppose that a point P in Fig.5-1 represents a particle that is moving. Let
the components of its velocity vector in $’ be u,.u,,u,. Now

r dx’ !
u.r = u}’ = z 7R
dt il dt
The velocity of P as seen from S reference frame will have components u.u,and u . Let us

'd g (5-5)

show how these are related to the velocity components in S’ by differentiating Galilean
transformation equations:

ac d, , d )
=—=—(X'+ut)=—+v=u.+v

dr dt

dy _ady' _ |
uy = :f? = Tdt— = u}, (5-6)
u =u'

These equations are known as Galilean velocity transformation.

Both Galileo and Newton were deeply aware of what we now call the relativity principle -
that is the basic laws of physics are the same in all inertial reference frames. You may
have recognized its validity in everyday life: for example, objects move in the same way in
a smoothly moving train (constant velocity) as they do on earth. When you play Ping-Pong
while riding in such a train the ball moves just as it does on the earth.

Newton’s physics, which we used until now, involves certain unprovable assumptions that
make sense from everyday experience. It is assumed that the lengths of objects are the same
in one reference frame as in another, and that time passes at the same rate in different
reference frames. In classical mechanics space and time we consider being absolute, or
electric charge is assumed to be unchanged by a change in inertial reference frame.
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The fact that the laws of mechanics are the same in all inertial reference frames implies that:
no one inertial reference frame is special in any sense. We express this important
conclusion by saying that all inertial reference frames are equivalent for the description
of mechanical phenomena. No one inertial reference frame is any better than another is.
When you travel smoothly at constant velocity in a train, it is just as valid as to say that you
are at rest and the earth is moving in reverse direction. There is no experiment one can do
to say which frame is ,really” at rest and which one is moving.

The situation changed somewhat when Maxwell presented his theory of electromagnetism.
He showed that light could be considered as electromagnetic waves. Maxwell’s equations
predicted that the velocity of light would be 3x10° m/s and this is just what was measured
within experimental error. The question then arose: in what reference frame does light have
precisely the velocity predicted by Maxwell’s theory. For it was assumed in agreement with
Galilean velocity transformation equations, that light would have a different speed in
different frames of reference.

For example if observers were traveling on a rocket at a speed of 10® m/s toward a source
of light, they will measure the speed of light reaching them to be 1x10® + 3x10° = 4x10°
m/s.

But Maxwell’s equations have no provision for relative velocity. They merely predicted
the speed of light to be ¢ = 3x10% m/s. This seemed to imply that there must be some special
reference frame where ¢ would have this value.

We know that light can be considered as electromagnetic waves. But we also know that
waves travel on water and along ropes and strings, sound waves travel in air and in other
materials. Since nineteenth century physicists viewed the material world in terms of the laws
of mechanics, it was natural for them to assume that light must travel in some medium.
They called this transparent medium the ether and assumed it permeated all space. And it
was therefore assumed that the velocity of light given by Maxwell’s equations must be with
respect to this ether.

Scientists soon set out to determine the speed of the earth relative to this absolute reference
frame whatever it might be. A.A. Michelson and E.W. Morley performed the most famous
experiment.

5.2 Michelson - Morley Experiment, The Postulates

This experiment was designed to measure the speed of ether, the medium in which light was
assumed to travel with respect to the earth.

One of the possibilities that nineteenth centuries considered was that the ether is fixed to
the sun, for even Newton had taken the sun as the center of the universe. If this were the
case (there was no guarantee of course) the earth speed of about 3x10* m/s in its orbit
around the sun would produce a change 1 part in 10* in the speed of light.

Michelson and Morley assumed that the motion of the earth with respect to the stationary
ether will produce a time lag between two beams traveling parallel and perpendicular to
the motion of the earth, see Fig. 5-2. They were able to measure this time lag using the
principle of interference. The time lag depends on the velocity of the earth with respect to
the ether.

We imagine that earth is at rest. So the ether wind moves to the left with the speed v.
The light from the source falls on the semitransparent mirror and is divided into two beams:

o 1st beam, traveling perpendicular to the ether wind,

e 2nd beam, traveling parallel to the ether wind.
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Figure 5-2

After reflection of these two beams on mirrors 1 and 2 the beams interfere so that
the observer can see the interference pattern. On the base of the interference pattern shift,
when the interferometer is rotated, it is possible to determine the time lag between
the beams. But Michelson and Morley did not find a significant interference pattern shift.
The man who explained this great puzzle of physics was Albert Einstein. In his paper from
1905 he proposed doing away completely with the idea of ether and the accompanying
assumption of an absolute reference frame at rest. This assumption was embodied in two
postulates. First postulate is called the relativity principle:

The laws of physics have the same form in all inertial reference frames.
Second postulate deals with the constancy of the speed of light:

Light propagates through empty space with a definite speed c independent of the
speed of the source or observer.

This second postulate is a direct result of the null result of the Michelson experiment. Thus
a person traveling toward or away from a source of light will measure the same speed for
that light as someone at rest with respect to the source (in vacuum). This conflicts with our
everyday notions, for we would expect to have to add the velocity of the observer.

Thus we can say that the second principle of special theory of relativity is in contradiction
with Galilean velocity transformation. This transformation is valid only when velocities
involved are much less than the speed of light.

Clearly a new set of transformation equations is needed to deal with relativistic velocities.
This new set of equations is called the Lorentz transformation equations.

5.3 Lorentz Transformation

We will now derive new transformation which:
¢ will be in agreement with both principles of special theory of relativity,
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¢ for the small velocities must change into Galilean transformation,
o must be linear (one point is transformed into one point),
¢ must be symmetrical (end point must be transformed into end point).

We imagine two inertial reference frames S and S, see Fig. 5-1. The reference frame S’
moves in the direction of the axis x with velocity v, which is comparable with the speed of
light. The origins of both reference frames overlap initially at the time ¢ = 0. The y and z
coordinates are not altered because the motion is only in x direction. We will assume that

transformation is linear and of the form

x' =y(x-ut), (5-7)
x=y(x'+vt"). (5-8)
The constant 7 is to be determined. We will not assume a form for ¢, but we will derive it.

Now if a light pulse leaves the common origin O and O’ at time 7 = 1"= 0 after a time # it will

have traveled along the axis x a distance
x =cl, (5-9)
or in printed frame %" =gk (5-10)

Substituting Egs.5-7 and 5-8 into Eqs.5- 9 and 5-10 we have

x=ct=y(ct'+vt')=y(c+v)t', (5-11)
x'=ct' =y(ct—vt)=y(c-v)t. (5-12)

We substitute ¢’ from Eq.5-12 into Eq.5-11, or
y(e-v)t 2(cz-vz)t
e, TN SR }( ——

x=ct=y(c+v)
c

Solving fory we have
(5-13)

Now that we have found y, we need only find the relation between 7 and £'. To do so we
combine Eq.5-7 with Eq.5-8, or

X' =y(x-vt)= y[y(x'ﬂft “)-vt].

]

Taking into account Eq.5-13 we obtain for time transformation
xv

Solving for ¢ we obtain
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In summary we can write Lorentz transformation

pu U

r s t r r I _Vijk
i B2 ! y=y, =2z, t'= c . (5-15)

v s

¢’ ¢’

t’+xv

r+ tf ?
x=222 ; y=y, z=2z, t= L (5-16)

1__"?,, 1__‘12

¢’ c’

Notice that not only is the x equation modified as compared to the Galilean transformation,
but so is the ¢ equation, indeed we see directly in this last equation how the space and time
coordinates mix.

We can see an important consequence of the special theory of relativity namely that the time
can no longer be regarded as absolute quantity. From the transformation equations we see
that time depends also on the observer’s position. Now let us have a closer look on another
consequences of special theory of relativity.

5.4 Length Contraction

As we have already mentioned the time has lost its special, absolute position and now we
know that it depends on the reference frame in which certain events take place. Similarly
not only time intervals between two events are different in different reference frames. The
lengths and distances are different as well in different reference frames.

Imagine we have two different reference frames S and S’, see Fig. 5-3.

Let us consider a rod, which is at rest along the axis x” in the reference frame S". This
reference frame moves with respect to the reference frame S with speed v along x axis.
The length of the rod in the reference frame S” is denoted as /.

Thus we have
L= =% (5-17)
y's'
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Figure 5-3
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In Eq. 5-17 x and x| are coordinates of its endpoints at the same instant of time. At any
instant of time the coordinates x, and x, of the endpoints of the rod in the reference frame

S could be determined from Lorentz transformation. Thus we can express the length / of
the rod measured in the unprimed reference frame S as

| =%, —%, (5-18)
where x, and x are coordinates of its endpoints at the same instant of time. To find

the length of the rod we substitute Lorentz transformation (see Eq.5-15) into Eq.5-17.
Thus we obtain

l___xz——vt_x,—vtz [
R
CZ 1c2 lc2
or
UZ
1=l == (5-19)

This equation gives the length that will be measured when an object travels past an observer
at speed v. It is important to note that the length contraction occurs only along the direction
of motion. The length contraction is a general result of the special theory of relativity and
applies to lengths of objects as well as to distances. This result can be stated most simply in
words as:

The length of an object is measured to be shorter when it is moving than when it is at
rest.

The length [, is called the proper length. It is the length of the object as measured by an
observer at rest with respect to it.

As far as we have the speed of the reference frame S’ in the expression for length
contraction squared it does not matter which of the systems is denoted as S and which of
them is denoted as S’. What is important that /, — the proper length - is the length of
the object in the reference frame in which the body is at rest.

5.5 Time Dilatation

The Einstein’s special theory of relativity also predicts that the time passes at different rates
in different reference frames.

Let us suppose that we have the inertial reference frame S° (for example connected with
a rocket) moving with the speed v, which is close to the speed of light, see Fig. 5-4. Let us
also suppose that the light bulb is connected with the rocket. The coordinates of the light
bulb in the moving reference frame S” are x’, y" and z".

Let us measure the time interval A7’ between two events, which happen at the same place
on the board of the rocket - for example the time interval between two flashes of the light
bulb. The first flash occurs at time #/ and the second at time #, (measured in moving

reference frame S). Thus for the time interval Ar" we have

=il (5-20)

86




* Observer on the Earth

LELS SIS
S

Figure 5-4

Let us now find the time interval Ar between these two flashes measured by an observer on
the earth — in the reference frame S. To do so we use Lorentz transformation for the instant
of time £, and ¢, so that the time interval in the reference frame S will be

At=1t,—t,. (5-21)
Note that the events — flashes of light bulb — take place at one point x". Substituting
Lorentz transformation for time (see Eq.5-16) into Eq.5-21 we have

] [
xXv , XxXv
t£+__t_ = r r
2 1 2 i —i
At = c c _ N 12’

UZ
A= AL 1- (5-22)
c
2

. v, , . .
Since ,/1—— is always less than one, we see that Ar>Ar'. That is the time between two
c

or

2

events which take place at the same point is greater for the observer on the earth than for
the traveling observer. This is a general result of special theory of relativity, which is known
as time dilatation. Stated simply the time dilatation effect says that:

Moving clocks are measured to run slowly.

Time is actually measured to pass slowly in any moving reference frame as compared to
your own. The concept of time dilatation may be hard to accept for it violates our common
sense. As we can see from Eq.5-22 the time dilatation effect is negligible unless v is
reasonable close to the speed of light. The speeds we experience in everyday life are very
much smaller than speed of light, so it is little wonder that we do not ordinarily notice the
time dilatation.

Experiments have been done to test the time dilatation effect and to confirm Einstein’s
predictions. In 1971, extremely precise atomic clocks were flown around the earth in a jet
plane. Since the speed of the plane (about 1000 km/h) is much less than speed of light, the
clocks had to be accurate to 10~ sin order to detect the time dilatation. The result of
experiment confirmed the prediction.
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Time dilatation has been also confirmed by studying the lifetime of elementary particles.
Many of these particles are not stable and decay after a certain time into simpler particles.
Careful experiments show that for a particle traveling at high speed its lifetime increases just
as predicted by the time dilatation formula.

5.6 Relativistic Addition of Velocities

The second principle of the special theory of relativity states that the speed of light is
the same is all inertial reference frames. Let us have a look if this principle is in agreement
with the Galilean velocity transformation. Suppose the following example, see Fig. 5-5.
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Figure 5-5 Figure 5-6

The first rocket moves with the speed v = 0.6 ¢ with respect to the earth. Rocket 2 is fired
from rocket 1 with speed u” = 0.6 ¢ (with respect to rocket 1). Following Galilean velocity
transformation the speed of the rocket 2 with respect to the earth will be 1.2 ¢ and this is in
contradiction with the second principle of the special theory of relativity.

Relativistically correct velocity transformation equations can be obtained from Lorentz
transformation. Let us suppose that we have two reference frames S and S’, see Fig. 5-6.
The reference frame S” moves with respect to the reference frame S with speed v close to
the speed of light. Let the particle M moves with respect to the reference frame S’ with
velocity u”. We would like to determine the velocity » of the particle as measured in
the frame S.

Measured in the S frame the velocity vector of the particle has components

dx dy dz
U =—, U, =—, u, =—. 5-23
R oodt dr =-28)
The velocity vector, as measured in the S” frame has components
u;=3:"—, o= u;=dz . (5-24)
dt IR dt

To establish the required relationships, we take the differentials of the Lorentz
transformation (see Eq.5-16) remembering that v is constant. This gives
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=, dy=dy, dz =dz’, dt =—=5—-. (5-25)

&+ vdf’
jiul LY
7 :rid—x-: cz = u;+v 17 :Q:—————cz .
X r 2 ¥ f L]
@ il ay geke d gy Y0
€ _. C C
Y
CZ
2
v
1-= ul
dz 02 z
s (5-26)
1+%)
C

These equations constitute the relativistic velocity transformation, which is in agreement
with both principles of special theory of relativity. Note that as v/c approaches zero
equations 5-26 approach those derived from the Galilean transformation — see Eq.5-6.

5.7 Relativistic Mass, Momentum and Energy

When a steady net force is applied to an object, the object increases its speed. Following
second Newton’s law F =ma the speed of the object can increase indefinitely, even to
the values exceeding the speed of light. This is, however, in contradiction with second
principle of the special theory of relativity.

Relativistically valid Newton’s second law is therefore stated in the following form

F=2(mv). (527)

where mass of the object is no longer constant but it is a function of its speed. We assume
that the momentum of the object is

p=mv, (5-28)
which is just like the classical formula for momentum, except that m is a function of a speed
of the object. From the condition of validity of conservation of momentum law in
the relativistic domain it can be shown that the dependence of the mass on the speed is

... (5-29)

1——

2
C

where my is called the rest mass of the object — the mass it has as measured in a reference
frame in which it is at rest and m is the mass it will be measured to have when it moves at
speed v.
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The relativistic mass increase has been tested many times on elementary particles, and the
mass has been found to increase in accord with the previous formula. Taking into account
dependence of mass on speed we can express relativistic momentum as
myv
2

1=V

c
To find a mathematical relationship between mass and energy we assume that the work-
energy theorem is still valid in relativity and we take the motion to be along the x-axis.
Work-energy theorem states that the net work done on the object is equal to its change in
kinetic energy.

The work done to increase the object speed from zero to v is

(5-30)

p:

W= [Fdc= j%@: j%udt: fudp . (5-31)

Since d(pv)= pdv+vdp we can write

vdp =d(pv)- pdv . (5-32)
Substituting Eq.5-32 into Eq.5-31 we have

W = |vdp = Id(pv)-— j'pdv.

Since integration is the exact inverse of differentiation the term jd (pv) becomes
SRR R | ..
6[al(pv) = pu|, =mv |D =muv’,

where m is a function of v. Therefore we have
myv

W =mv' — Ipdv =m’ - Imvdv =mv’ - =dv. (5-33)
0 v
¥
CZ

The second term is easily integrated. We denote 1= I Al = dv . Using the substitution
f v
;
CZ

0

2
v . vdv ; §
U=, }1 ~—5, we obtain === ¢’du . Thus we can write the integral I as
c

(i

2
C

[=m, [—c"‘ jdu] = —m,c? {, h —‘;—z - 1] . (5-34)

Substituting Eq.5-34 into Eq.5-33 we have after little rearrangement

W =myc’ NS | (5-35)
| .

2
&

By the work-energy theorem the work done must be equal the final kinetic energy since
the object started from rest. Therefore for kinetic energy we have




~1}. (5-36)

Note that for speed v << ¢ the expression for Ex must go into a classical formula %muz.

2Y2
To show this we use a binomial expansion for term [1 —0—2] . Substituting this expansion
c

into Eq.5-36 se obtain

2

B =mecz(l+—%v—2+...—1)z—;-movz. (5-37)
c

? requires some interpretation. First of all what does

The equation for E, =mc’ —mc
the second term moc2 mean? Consistent with the idea that mass is a form of energy.
Einstein called m,c” the rest energy of the object. We can rearrange the equation for

Kinetic energy to get

mc® =myc’ + Ey . (5-38)
We call mc® the total energy E of the object
E=mc*. (5-39)

Thus we see that the total energy equals the rest energy plus the kinetic energy, which is
Einstein’s famous formula. For a particle at rest its total energy is

E, =myc*, (5-40)
which we have called its rest energy. This formula relates the concepts of energy and mass.
Thus the mass ought to be convertible to energy and vice versa. That is if mass is just one
form of energy then it should be converted to other forms. This is the best known result of
special theory of relativity called mass-energy equivalence. The interconversion of mass
and energy can be detected in nuclear and elementary particle physics. For example
the neutral pion 7° of rest mass 2.4x107% kg is observed to decay in pure electromagnetic
radiation (photons) in such a way that 7' completely disappears in the process.
The amount of electromagnetic energy produced is found to be exactly equal to that
predicted by Einstein’s formula.
The reverse process is always observed - for example electromagnetic radiation under
certain condition can be converted into material particles, such as electrons. On a larger
scale the energy produced in nuclear power plants is a result of the loss in mass of the
uranium fuel as it undergoes the process called fission. Even the radiant energy we receive
from the sun is an instance of E =mc?; the sun’s mass is continuously decreasing as it
radiates energy outward.
A useful relation between the total energy E of a particle and its momentum can be also

m,

derived. Since E =mc’ and p = mv, where m = , we can easily obtain
p 2 y

1%
foce
C

E=yp*c+mc’ . (5-41)
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5.8 Spacetime and Four-Vectors

Einstein regarded events as the basic data of physics. He found that every inertial observer
has his own privately valid time and correspondingly his own “instantaneous three space”
consisting of all events (x,y,2,f) with fixed time coordinate. But it was the mathematician
Future Minkowski (in 1908) who proposed to think
of the totality of events in the world as
the “points” of an absolute four-dimensional
manifold, called spacetime. Minkowski’s
diagram, which represents spacetime, with
two dimensions suppressed, is shown in Fig.
5.7. The “moments” in this graph have
equation ¢ = constant and correspond to
horizontal line a — b, while the “history” of
each fixed point on the spatial x axis
corresponds to a vertical line ¢ — d. Different
inertial observers draw different sections
through spacetime.
But in the relativistic case spacetime is very
much more than a conventional scheme for
Figure 5-7 drawing graphs. It is a four-dimensional metric
space. Analogously to distance we can define
for any of its two points (that is for two events A and B) the interval as

Past

As g Z\:c2 (IB '“IA)Z '_(xB _xA)2 —(ys ‘J’A)z _(ZB —ZA)z]E s (5-42)

1
or As =[O0 - A Nt OB (5-43)

Denoting the spatial separation as
1

Al =[Ax2 +Ay2 +AZZ]§,
1
we can write K e [c2N2 = Alz]i . (5-44)

We can also express an interval in the differential form as

ds=|cdr’ —a’lz]% : (5-45)
The interval is absolute that is, it has the same value when evaluated by any inertial
observer. We may discuss here briefly the physical significance of As,; or better As’y.
Evidently As’,= 0 holds for two given events A and B if and only if these events are

connectable by a light signal.
2

When As’,;> 0 then in any inertial reference frame (see Eq.5-44), ¢’ :%IA?'- , and thus

an observer moving with uniform velocity less than speed of light can be sent from one of
events to the other.




S : A’ R ‘
Similarly, if As’,< 0, then ¢’ < — and the spatial separation Al between events A and B
At

is greater than the path that could be traveled by light is time Az. Therefore there could not
be any connection between events A and B.

Minkowski demonstrated that the existence of the “metric” of spacetime has a significant
mathematical consequence: it leads to the four-vector calculus beautifully adapted to
the needs of special theory of relativity. Relativity considers the four components, which
make up a four-vector to make up a single physical quantity.

Thus we introduce instead of spatial coordinates x,y,z and time coordinate ¢ four
components X, X2, X3 and x; of the four-vector in the following way

X=X n=y X3=2z X4=jct, (5-46)
where j is the imaginary unit.
As an example we can express in the Minkowski spacetime an interval using Eq.5-45.
The three spatial components form an ordinary vector in the three-dimensional space. Thus
we can write for the spatial separation of two events

dl’ =dx’ +dy* +dz* = dx] +dx; +dx; . (5-47)
For the temporal separation we obtain

& = —cdf. (5-48)
Substituting Eqs.5-47 and 5-48 into Eq.5-45 we have for interval

ds® = —dx} —dx —dx} —dx?,

4
or ~ds’ =dx] +dx] +dx; +dx} =) dx,dx, . (5-49)
a=l1
In analogy with distance in three-dimensional space we can consider the interval as
“distance” between two events in the Minkowski spacetime. An interesting property of the
interval is that it is not changed when transformed according to Lorentz transformation.
Such a quantity is called a Lorentz-invariant

ds=ds'. (5-50)
We can also rewrite Lorentz transformation into Minkowski spacetime. To do this we can
write

n=x X2=Y, X332, Xa=jei,
and
X S, £ =8, REE, A 1
Substituting these equations into Eq.5-16 we obtain after little rearrangement
.U r ’U ’
xl'-J—x; x4+’—’~ .
x1=———C—T, Xy =%s By =Xps x4=«~——c—2. (5-51)
v v
1=— 1-5
¢ c

These equations are Lorentz transformation for the components of any four-vector. It can
be also shown that Lorentz transformation may be thought of as a rotation in the four-
dimensional spacetime, when the fourth dimension is jet. To do so we rewrite Eq.5-51 into
the following form
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X =y —jBx, %=X, Xy =X, X, =yX,+jyBx. (5-52)

where =Y and yis given by Eq.5-13. Due to the fact that y* =(jBy) =1 we can

denote
y =cos@ JjPy =sing.
Thus we can rewrite Eq.5-52 as

X, = X| cOs@ — X, Sing ¥, =%, % =X, x, =x,cosp+xsing. (5-53)

Figure 5-8 shows a point A in the (X,,X,) coordinate system. In this coordinate system
the point A is said to have coordinates x; and x,. The same point has the coordinates x|
and x/, in the coordinate system (X], X}) rotated with respect to the first by the angle ¢ .

X

X4' 4
_________________________ A
X

) ' b Xl'
|
Xy
* X
Figure 5-8
From this figure we can obtain the transformation equations
X, = X; COS@ — X, Sing X, =X,CoS@+X;SinQ. (5-54)

On the base of the formal analogy of the first and last equations of Eq.5-53 and Eq.5-54 we
can therefore consider Lorentz transformation as a rotation in the four-dimensional space
about axis x, =x; andx; = x;.

To introduce four-velocity and other four-vectors we need another important invariant — so
called proper time. Let us imagine we have a clock moving with respect to the inertial

reference frame S. At the time df the clock travels the path dl =./dx’ +dy’ +d’

(measured in S reference frame). We are interested in time d7r measured by the clock in the
reference frame S° which is moving together with the clock. In this case dx’= dy'=dz' =0.
Taking into account that the interval is invariant to the Lorentz transformation, see Eq.5-50,
we can write

ds=+c’dt* -dI’ =cdr, (5-55)

or

dr= A5 = & cdi? —dl* . (5-56)
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Following the second postulate of the special theory of relativity the speed of light is also

; . ds . . . . . .
Lorentz invariant. Thus — is invariant and therefore dr is also Lorentz invariant.
c

The time dr is called the proper time and it is the time measured by clock moving together
with the object. We shall not be surprised, therefore, to find drappearing in many
relativistic formulae where in a classical analogy there is a dt.

We can also rewrite Eq.5-56 into the following form

a3 (5T-(3) -5}

Supposing that the clock moves along x axis only we obtain

v2
er=d|l=—- (5-57)
&

We have therefore arrived in different way to the expression for time dilatation — see
Eq. 5-22.

Newton’s mechanics is not Lorentz-invariant. It was therefore necessary to construct a new
mechanics, called “relativistic” for objects moving with high speeds. In this mechanics we
work with four-vectors. Therefore as an example we introduce some basic four-vectors
which allow us to formulate Lorentz-invariant Newton’s law.

The prototype of a four-vector is the displacement four-vector between two events.
The components dx,, «=1,2,3 and 4 of this four-vector could be obtained by

differentiating Eqs.5-46.
The components of four-velocity are defined as

u, = &, s a=1,2,3 and 4. (5-58)
dr

where dr is the proper time. Substituting for dx, and for dz we have for components of
four-velocity

v, U I L
u, = 3 - : : (5-59)
-8 1= 1-p* {1-F°
For the norm, or magnitude of four-velocity we easily obtain
w: =—c, (5-60)

As far as the speed of light is Lorentz-invariant the norm of the four-velocity is also
Lorentz-invariant. We can also recognize in the first three components of a four-velocity
the components of a familiar three-vector velocity.

Now let us suppose that associated with each particle there is a scalar — the rest mass my. It
turns out to be identical with the mass the particle manifests in slow motion experiments.
We then define for each particle analogously to Newton’s momentum a four-momentum

P, =mgl,, a=1,2,3 and 4. (5-61)
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Using Eq.5-59 we obtain for components of the four-momentum
my, | Mg, | M,  JMmC

Dy = 5 : : .
J1-82 1-p " \1-p* {1-p

We can show, using Egs.5-29 and 5-39 that the fourth component is proportional to the
total energy of the particle

(5-62)

. . 2 .
m,c m,C
P = J 02=i 0 2=..J.I.E_ (5-63)
\/l—ﬂ c Ji-p ¢

Thus we can write for components of the four-momentum

P, =[pup2=p33i"EJ' (5'64)

Taking into account Eq.5-60 we can express the norm of four-momentum

pl=mul =-myc’. (5-65)
However we can express the norm of four-momentum also from Eq.5-64. Thus we obtain
2
P=pt - (5-66)

2 2
c
where p is an ordinary momentum. From comparison of Egs.5-65 and 5-66 we can obtain
well - known formula relating energy and momentum of the particle

E= \/pzcz +m0c4 .
We can now define the four-force on a particle having four-momentum with components
p, by the relation

F, = W @=1,2,3 and 4. (5-67)
dr

This equation is the Lorentz-invariant Newton’s law in the four-dimensional space.

The components of all four-vectors u,, p, and F, are transformed from one reference
frame to another according to transformation equations 5-51.

A four-vector differs from an ordinary vector in one important respect. The norm of a four-
vector can be zero and yet the four-vector can have non-zero components. The norm p* of
a photon’s four-momentum is zero due to the fact that m, =0 (see Eq.5-65) and yet
the photon can have momentum and energy (see Eq.5-66).

In this short introductory course of special theory of relativity we did not study relativistic
electrodynamics dealing with the motion of charged particles. The four vectors are
extremely useful namely for the study of this topic. As an illustrative example we rewrite
the conservation of electric charge law

T
divj+—=0, 5-68
J+— (5-68)

into four-dimensional form.
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We remember that the current density j= pv . Using Eq.5-46 we can write Eq.5-66 as

v, , 9pu, , 9P P JC (5-69)
v, | o, om O Jjo

We denote components of four-dimensional current density as

7 =Py J2 = pPU, J3 = PU; Ja=Jep. (3-70)

Do not confuse the components of four-dimensional current density j,, j,, j; and j, with

the imaginary unit j. Taking into account Eq.5-46 we can express the conservation of
electric charge law as
9Ja 9. (5-71)

a

This is the relativistic statement of the conservation of electric charge law. It can be easily
proved that this equation is also Lorentz invariant. It can be also shown that the Maxwell’s
equations also do obey the principle of relativity.

5.9 Summing Up

The theory of special relativity is confined to the discussion of physical phenomena relative
to inertial reference frames. Of course at speed much less than the speed of light
the relativistic formulas reduce to the classical ones. Thus we see that the special theory of
relativity accomplished a profound unification in physics: it reconciles the physics of low
speed with that of high speeds.

Special theory of relativity is not applicable in non-inertial frames of reference. Einstein
strove for ten years to develop a general theory of relativity dealing with non-inertial
reference frames. He felt that it should be possible to express the laws of physics in
a covariant form for all reference frames, that is the mathematical form of the laws of
physics should be the same in all frames of reference whether they are accelerating or not.
This is the principle of covariance. The general mathematical equations might reduce to
simple mathematical forms in inertial reference frames, and they should be consistent with
the theory of special relativity in inertial reference frames. In order to develop the full theory
Einstein found it necessary to use tensor analysis. Using his full theory of general relativity
he was, for example, able to calculate the gravitational shift of spectral lines,
the deflection of light near the Sun and the precession of the perihelion of the orbit of the
planet Mercury.

It is beyond the scope of the present textbook to discuss here the general relativity.
The interested reader can find its description in original books by Einstein, Born, Foch etc
(see references).
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