3.2 ELECTROSTATIC FIELD

Two point electric charges exert a force on each other which is given by Coulomb's law

F_lQlQZO

4xe r?

where F, is the force exerted by the charge Q,on the charge Q,, 1’ is a unit vector of the
position vector of the charge O, with respect to the charge Q,, and € is the permittivity of

medium in which both charges are placed. The permittivity of a medium can be expressed in
the following way:

r

£= &8

where &, is the permittivity of a free space and ¢, is the relative permittivity of the medium.
The electric field vector E in any point of the field is given as the ratio of the force F, which
acts at the glven point on a charge Q', to that charge. Near the pomt electric charge the electric
field E is given by the expression

E_ 1€
E"Q dme r?

The electnc field for a group of charges 0,,0,...0, follows from the pnnt:lple of
superposition

E-S E, - a“l"ZQ’ °

If a charge dlstrlbutlon is continuous with a surface charge density o, the electric ﬁeld E
due to this electric charge is

UdS o

47:3

where dS is an infinitesimal element of the surface of the conductor and r° is a unit vector ofa
position vector of a point in which we determine the electnc field E with respect to an
elementary surface dS.

If an electric charge is distributed continuously within a certain volume with a volume density

p the electric field E due to this charge is given by the expression

4n3IIIpdv :

where dV is an infinitesimal element of volume, and r is a unit vector of a position vector of
a point in which we determine the electric field with respect to an elementary volume dV.
The flux ®, of an electric field through the closed surface is defined as

@, =[ [Eas
(s)
where dS is a vector normal to the elementary surface dS and oriented outward from the
closed surface S.
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Gauss' law states that
electric flux through a closed surface is equal to the net charge enclosed by
that surface divided by the permittivity of a free space, or

o,
ffras 54
(8)

The work done by the electric field to move an electric charge 0, from point K to point L is
equal to

4 :f[Fﬂ.dr =0, j’Edr
K K

If the electric field is produced by a single positive charge O which is situated in the origin of
the reference frame, then the work done to move an electric charge (), from point K to point

F;) Y QQ]I ' l I
471’80 f4 L )

where r, and 7, are the initial and final positions of the path travelled by the charge (), .
The work done in an electrostatic field to move an electric charge in a round trip is equal to
Zero

§Edr =0

The potential energy W, of the point charge {, in the electrostatic field is equal to the work
done by the external forces F,_, in moving the charge 0, from the reference position B to the
point K:

B2 o P
W, =[F.dr=—[Fdr= -Q, [Edr
B B B

The electric potential (or simply potential) in the point K is defined as the ratio of the
potential energy per unit positive charge, or

W 2
@=—7f=—|Edr

. o
The potential ¢ is defined as work done by the external force in moving the unit charge 1 C
from the reference position B to the given point P.
In the case of an electrostatic field due to a group of charges the potential in a certain point in
this field can be found on the base of the superposition principle, or

@ :ZQ'
=1

If the charge which is the source of the electrostatic field is continuously distributed over a
certain volume or area with a volume charge density p or a surface charge density ©
respectively, then the potential in the certain point of the field can be expressed as
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or

r=ak [T

where r is the distance of the charge dq ﬁ'om the point in which we calculate potential.

The set of all points which have the same potential is called the equipotential surface.

The relation between the electric field and the potential in the electrostatic field is expressed
in the following way:

E=- gradyp
The electric dipole is a system of two equal but opposite charges +Q separated by a
distance /.
The electric dipole moment pis defined as

p= 0.1 ,
where 1 1is a position vector of a positive charge with respect to the negative charge.
An electric dipole placed in a homogenous electric field E experiences a torque D of the force
couple

D= pxE
The effect of the torque is to turn the dipole so that the electric dipole moment p is parallel to
the electric field E
In the static situation, when the charges are at rest, the electric field inside any conductor is
equal to zero. Electric charges are distributed on the surface of the conductor. The surface of
the conductor is an equipotential surface. If there is a hole inside a conductor the electric field
inside the hole is equal to zero.
The capacitance of the conductor is defined as the ratio of its charge to its potential, or

c=4
Capacitance depends on the shape and size of the conductor and the material of the
surrounding medium. '
When a dielectric material (insulator) is placed in an external electric field it becomes
polarized. Due to the polarization, induced charges appear on the surface of the dielectric
material. 52
The electric polarization vector P is defined as the sum of the induced electnc dipole
moments per unit volume, or

2.0
—_— yV

The surface charge density o, of the induced charge is equal to the magnitude of the electric
polarization vector, or :
|P|= op

Due to the existence of the induced electric charges the electric field E inside the dielectric
material is smaller than the external electric field E , or
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The electric susceptibility is defined as

k=g=1
For a homogeneous and isotropic electric field we can write

P = gkxE
The electric displacement vector D is defined as

D= ¢gE+ P
Gauss's law for a displacement vector states that the flux of the displacement vector depends
on the free charge only, or

fjoas=0

where Q represents a free charge. |
The electrostatic potential energy which is stored in the charged capacitor is

W le

where C is the capacitance of a capacitor and U is the potential difference between the plates
of the capacitor.

The electrostatic energy density is defined as the ratio of the energy enclosed in a certain
volume, Or :

ED

b=

W, =

Problem 3-14. Two identical, equally charged balls, each of mass 3x 10 ® kg, are hung from
the same hook on strings of length 0.05 m. Their mutual repulsion causes each ball and string
to make an angle of 30° with the vertical. What is the charge on each ball?

Solution: As long as the balls are at rest, the net force Ey acting on each of them acts in the

direction of the string. The net force is equal to the vector sum of the electric repulsive force F
and the weight G.

As we can see from the sketch
1ga= % = ﬁFg_ and therefore
F=mgiga

From Coulomb's law

4 g8

F= 4xgy  1?
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0 0

ﬁo r: :mgtga

we obtain

For the string we havesin @ = ﬁ

Substituting into the equation for balance of forces, we have

1.0 8 0

4rmeo 4 P sina
For the electric charge we obtain

= mgiga

¥ _
5

Q= 4lsin ane, mg1ga= 4x 0.05x & \fx 885x 10 " x 3x 10 ° x 9.81x

=22x 10" C

Problem 3-15. Ca]aﬂate the force on the charge (,, which is shown in the Figure, due to the
charges (O, and O,.

Q3=+65.10"0¢

30 cm

52 cm
ap=+50.1078 ¢ aq=-86.1075¢

Solution: The forces K, and F, have the directions shown in the diagram, ‘since (), exerts an

attractive force and Q, a repulsive force. The magnitudes of F, and F, are (ignoring signs

since we know the directions):

y Dlod oo Gh 0 ol 65x10-5x86x10-6 _
Bt 17 amassao” (03%052) Y

-6 —6
. 1 & zQ3 . 1 e 50x 10™°x 2t55>< 100° _ 325N
478, h’ 4z x 8.85x 10 G

We resolve force F, into its
components along the x and y
axes as shown:

F_ = F, cos30° = 120N

F,=-Fsin30° =~ 70N
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The force F, has only a y component. So the net force F on the charge (), has the

components:
F =F, = 120N

F,= F,+ F, = 325~ 70= 255N
Thus the magnitude of the net force F is: '

F=F! +F =y120° +255" = 2818N
The net force acts at an angle ¢ given by

F
gp= - = 23212 or ¢= 65

Problem 3-16. Calculate the electric field along the line perpendicular to a bisector of two
equal positive charges +Q as a function of the distance from the centre of a bisector.
Determine at which distance x the electric field reaches its maximum , and determine the
maximum value of the electric field.

Solution: The electric field along the line perpendicular to the bisector is the vector sum of the
electric fields due to each charge. For the magnitude of the electric field of each charge we can
write:

g1 9 1 0O
1E HE I" dmer?  Ame(a? +x?)
1 Following the principle of superposition
; - the resultant electric field E is equal to

the vector sum of the electric fields due
to each charge, or

B

E=E+E

For the magnitude of this electric field we
have

* E=|E|'=2]E’|cosa=2|E"|cosa=

0 = 1 0 x

2a ) :24m€ [a2+x2) e s?

The distance at which the resultant electric field reaches its maximum can be found as an
extremum of the function E=FE(x), or

dE_ Q@ (. 2%, 3x
o 98 i
dx 2r¢ 8 )_

at+x*
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From the condition

QE:O we obtain xm:i—a—
dx 2

The maximum resultant electric field can be found by substituting x = + into the

S

expression for the electric field. After a little rearrangement we obtain

Y

o = + ——
. T g . 3\37ed’
= ‘/':’\\ The electric field along the line
) perpendicular to a bisector of two

~H ? -£  —s+x  equal charges as a function of the
2 distance from the centre of a

bisector is shown in this figure.

Problem 3-17. A charge is distributed uniformly over the entire length of an infinitely long
wire with linear charge density 7. Find the electric field E at a distance r from the wire.

Solution: We set up a co-ordinate system so the wire is on the x axis with origin O as shown.
A segment of wire dx has the

charge d(Q=tv.dx The electric

field 4E, at point M can be

resolved into a horizontal

component dE_, and a vertical
component dE . Symmetrically

to the origin there is on the
segment dx of the wire an equal
electric charge which produces at
point M an electric field dE,,
which can also be resolved into

two components dE_, and dE ,.

The components dE_; and dE_,
have the same magnitude but
, opposite directions Therefore they will
cancel each other. The resultant electric field due to the symmetrically placed charges dQ is
therefore

dk.=dE, + dE , = 2dE cosa = 2dE, cosa
The magnitude of the field contribution dE, due to the charge element dQ is given as

T dx

2
dme a

dE, =

and the magnitude of the resultant electric field dE can be expressed as
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dE = 2 —— SOS& gy
4re
The electric field due to the whole charged wire is found by the integration of the previous
equation, or
P T cos2 a,
2ney, A

This integral is readily evaluated when we use a.asa variable. Using the substitution

r
x=riga d = —L—da and g=

cos’a cos
Note that we have to change the limits of integration from 0 to 7/2. Thus we obtain

B

oo
T pcosa T
E=——|——d= Tcosadaz
2rey, a 2mery, 2mer

From this result we see that the electric field of a long straight charged wire decreases
inversely as the first power of the distance from the wire. This result, obtained for an infinite '
wire, is a good approximation for a wire of finite length aslong as 1 is small compared to the
distance of point M from the ends of the wire. '

Problem 3-18. A thin rod, carrying a total charge +0, is bent into the shape of a semicircle
with a radius R. The charge is uniformly distributed over the length of a semicircle with a linear
charge density T. Supposing that the rod is placed in a vacuum, determine the electric field at
the point A. '

Solution: The charge dQ of the particular segment of the ring length dl can be
expressed as e
dQ,=rdl=7(Rd)

The magnitude of the electric field due to

this charge element dQ; is
1 g%_ 1 tRde
= 4ne, R* ~ 4ns, R’
where
ona= T g oo 2 )
dE, and 3 @
"
cos a--cos[—z_qz)]:sm @
.dE{-- dE, cosa = dE, sin ¢ = %%@smqr
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Since symmetrically to the charge dQ, is on the ring placed the same charge dQ,
which produces at point A the electric field dE, than the electric field due to these two

charges is

27R sinzqo d
4rme, R

The total charge of the ring is dO0=r7 R

dE = 2l =

The resultant electric field at point A is found by integrating the effects of all the
elements that make up the semicircle, or

20

2 i,
E=—"=—|sin pdp=—5"—
47:260R2;‘: e 4r’e,R®

Problem 3-19. . Determine the electric field at point M on the axis of a uniformly charged disc
of radius R. The surface charge density is ©.

Solution: We divide the disc into thin rings which has the radii r and r+dr. As long as the
surface charge density is ¢ the charge of the ring is
dQ =2r rodr
N This electric charge sets up an electric
, g field at point M. Due to the symmetry,
| pr aky the components of the electric field
l M parallel to the plane of the disc are
dE cancelled out by an equal but opposite
2 : component established by the charge
B element on the opposite side of the ring.
o e Thus the component of the electric field
perpendicular to the plane of the circle
contributes to the resultant electric field,

or
= : " dE, = dE cosa
R * Substituting for
__1 4
4ng, §

and integrating from 0 to R we obtain

1 %cosa
B f SR
g 471'80‘! P ©

This integral is readily evaluated when we use o as a variable.
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Using the substitutions

yes r=atga  dr= az da
cosa cos’
we obtain for the resultant electric field
B
1 pcosa o'r. o 8 o
E=E =—— do= —\|sinada=— |- cosa| = — [1- cosp |=
¥ 471'5-[ s? © 23'[ 28 [ ]" 2¢ [ ﬁ]

0

3 PRI S
2e(  Ja*+R* )

Problem 3-20. Electric charge is distributed uniformly over a large square plane of side , as
shown in the following figure. The surface charge density is . Calculate the electric field at
point P, a distance z above the centre of the plane where z is much less than L.

Solution: Since we already know the electric field due to a long charged wire (see Problem 3-17),
let us divide the plane into long narrow strips of width dy and length L and then sum the
contributions to the electric field due to each strip to get the total electric field. Since o is the
surface charge density the charge on each strip is

dQ = oL dy
Therefore each strip can be gonsideref as a line of charge with a charge per unit length of
1= F= S0

The distance from point P to the centre of the strip is (" T+y )i .
Using the result of Problem 3-17 the electric field due to the strip is

162




. A0 ] ody
27, (xz & yzﬁ 278, (x* + y? )%

The plane is symmetric about a line through the centre, so when we sum over all the strips that
make up the plane, the y components of the electric field will vanish. Hence we need sum over
only y components of the electric field, where

dE, =dEcosf=dE ——
(& +y°)
The total electric field is thus

i

E=[dE =T [ B - ozf] ZJ
I %, 27e, % (2 +)?) 27r5;kzamtgz

If we consider only points for which z << L, distant contributions will be small and we can
effectively let

Bl

ZI zk
£ 5 2

y== Py “m compared to z, so for the resultant electric field we obtain

g |\r T g

:271'30 2 2 _E;::

This result is valid for any point near an infinite plane. It is also valid for points close to a finite
plane compared to the distance to the plane's edge. Thus the field near a large, uniformly charged
plane is uniform and directed outward for positive charge and inward for negative charge.

Problem 3-21. Determine the electric flux through a hypothetical closed cylinder of radius R
which is immersed in a uniform electric field , the cylinder axis being parallel to the field lines.

Solution: The electric flux through the closed cylinder can be written as the sum of three terms, an
integral over the left cylindrical cap, the cylindrical surface and the right cap:

-
E

whe o, =[ [Eas=
s

x B : o
d_SL /_\ E i ds;
| = | JEds,+[ [EaS [ [Eas,
51 S2 5, s, 5
Sp
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For the left cap, the angle o for all points is x, the electric field has a constant value, and thus for
the flux through the left cylinder cap we can write

[ [Eds,=-Es,
81 =
Similarly for the flux through the right cylinder cap we have
[ [Eds =Es,
S:
Finally for the cylinder wall we have

| S[Edsp =0

Problem 3-22. A very Iéng__straight wire possesses a uniformly distributed electric charge with
Thus the total flux through the whole cylinderis

| [EdS =-ES, +ES,=0
s

because the areas of the caps are the same. We expected this result because there are no sources
or sinks of electric field, that is charges, within the closed surface.

linear charge density &. Determine the electric field at points near the wire using Gauss' law.

Solution: Because of the symmetry, we expect the electric field to be directed radially outward

provided that the charge is positive, and to depend_only on the perpendicular distance r from the

wire. Because of this cylindrical symmetry the field will be the same at all points on a Gaussian

surface that is a cylinder with a wire along its axis. The electric field is perpendicular to this

surface at all points. However for Gauss'law we need a closed surface so we must include the flat
ends of the cylinder.Since the electric field is
parallel to its ends

1] EdS:E(z:rrl)zi—g

S
———a=
-
-

where / is the length of our chosen Gaussian
surface (length of the wire). Hence for the

s.____“l__‘//
o'
S b L

electric field we can write
i E=_L1 ¢
E 2me, v
, o

This is the same result as we obtained in
problem 3-17 using Coulomb's law.

o e e e e oed
—————
—g————f

i S |
[ —
S —
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Problem 3-23. An electric charge ( is distributed uniformly on a conducting sphere of radius
R. Determine the electric field outside and inside the sphere.

Solution: Since the electric charge is distributed symmetrically, the electric field at all points
must also be symmetric. The electric field is directed radially outward for the positive charge.

|

.,
n
o

—t T

To determine the electric field outside the sphere, we choose as Gaussian surface a sphere of
radius 7 (r>R). As long as the electric field on this sphere is constant we obtain from Gauss'

law:
-.- .‘. Eds:,.- IEdg:EIIdS =FE4nr? :Q_
" s s &
or
s ok, _522_
4mer

We see that the field outside a charged sphere is the same as that for a point charge of the
same magnitude located at the centre of the sphere.

To determine the electric field inside the sphere, we choose for our Gaussian surface a
concentric sphere of radius ' (¥<R). Thus we can write

Ednr*=0
because the electric charge is distributed only on the outer surface of the sphere. Thus the
electric field inside the conducting sphere is equal to zero. The electric field as a function of
distance from the centre of the sphere is shown in the figure. ‘

Problem 3-24. Determine the electric field near an infinite charged conducting plate. The
positive charge is distributed uniformly with a surface charge density ©.

Solution: We choose as our Gaussian surface a small closed cylinder whose axis is
perpendicular to the plane and which extends through the plane as shown in the figure.
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e

: Because of the symmetry, the electric field
z points at right angles to the end caps and away
l I 1 from the plane. Since E does not pierce the
cylindrical surface, there is no contribution to the
S flux from this source and all the flux is through
i d the two end caps. So Gauss' law gives:

[ [Eas=265-2-25

& &

& £ where O = oS is the charge enclosed by the
Gaussian cylinder. The electric field is then
g
}
‘ 2¢
This is the same result as we obtained much more laboriously in problem 3-20.
The electric field is uniform and the same for all points on each side of the plane. This
derivation yields substantially correct results for real (not infinite) charged sheets if we
consider only points not near the edges whose distance from the sheet is small compared to

the dimensions of the sheet.

Problem 3-25. Determine the electric field between and outside two very large conducting
plates carrying an equal but opposite charge which is distributed over the plates with a surface

charge density .

A A

Solution: We can solve this problem using the superposition principle. In the region between
the plates, the fields of the two plates are in the same directions. Adding the parallel vectors,
we obtain : '

o o©

E=E +E =2
_ 28, &

In the regions outside the pair of plates, the fields due to each plate are in opposite directions,
so the electric field vanishes outside the region between the plates.

Problem 3-26. Determine the work that must be done to move a positive charge 0 =3.107" C
from a point A with potential ¢, =300 V to a point B with potential @,=1200 V.

Solution: The work that must be done by the external force will be equal to the increase of
potential energy of the transported charge. Thus we have

A=W, W =00, —Q@,=3 x10*(1200-300)=27 x10™*J
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Problem 3-27. Determine the potential at point P between two coaxial conducting cylinders.

Solution: The electric field between two cylinders can be found from Gauss' law

f s
(s) 4

For our case we obtain

E2rri= 2
g
or
_ 0
2rerl
As long as we can write E=- %
we have
sodp 1o v apo. 2
dar 2ms lr 2ze Ir
After integration we have
@, =- g Inr+ K
2re l
Substituting for 7 = @ we obtain
Q,=— 0 Ina+ K
28 d
and for r = b we have
0
=-— Inb+ K
i 2ze l
Eliminating X and we have
2re
Q b
== ]n___,
e 2rel a

Thus we obtain for potential at point P

0@ —;’a)ln,_ PO () —;va)lna
In— i
a a

after a little rearrangement we finally have
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0, =0, 1o 0.5

a

Problem 3-28. Determine the electric field at any point A in the xy plane due to an electric
dipole. Assume that the point A is not too close to the dipole.

Solution: Two equal charges of opposite sign, 20, separated by a distance 2d, constitute an
electric dipole (see the following figure). We place the origin of the reference frame into the
middle of the line joining the two charges. Since the potential at point A(x,y) is the sum of

the potentials due to each of the

‘1’ two charges, we have
Alx,y) e
-4
me\n T
.
'y We can express the distances 7;
m and , from point A to the
3 >\, _ positive and negative charge
% respectively, as a function ofx
-Q 0 +Q —_— X d
d d and y as

r=y(x-d) +y’ ' r=y(x+d) +¥’

Substituting for 7, and 7, into the expression for potential we have

0 1 1
" ane Jod) v Ae+d) +5°

We find E, and E,, recalling that

After derivation we therefore obtain

e 0 x+d " x—~rd . )
g o e

E,= Y ¥ ' y ]
4”8[ [(x+d)2 +y2F kx—d)2 +y2F

Of practical importance are the points whose distance from the dipole is much larger than the
separation of those two charges, that is, for r))L In this case we obtain for the distances 7,

and 7,:
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| L =r—dcosa n, =r+dcosa.
Substituting these equations into the expression for potential we have

S ! ]
¢ 4xe \r —dcosa r+dcosa
after a little rearrangement we obtain

Sl I

dxer 'l_dcosa {4 acosaJ
e :

dcoso

{{ 1. Taking the last inequality into

Taking into account that 7))d then

account, we can write the binomial theorem in the form

(1+x)" =1F nx

Thus the expression for potential reducesto ¢ = —42-— 5 d::) e
e

To determine the expressnon for the electric field in the x,y co-ordinates we put
2sQ=pand

X

COSQ = ———— .
JxX+ )

For potential we therefore have
px

4we J(JcZ + yz)3

For the components of the electric field we obtain

¢ =

dp P(le -J’Z) E = de _ 3pxy

o ame(x’ + yl)% R A )

For the magnitude of the electric field we have

‘/ 2 +9xy
E=\E +E, = P

2
(¢ + )
We can also express the radial and tangential component of the electric field (see
following figure), from the potential function ¢(7, r). Taking its partial derivatives we
have

dn

e de _ 2pcosa
e : dr  Awer
X for the radial component of the electric field.
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Taking into account that dn =r da we can determine the tangential component of
the electric field as

" dn rda 4rner
Finally for the resultant electric field we find

E = Ef+E: S 3\/sinzoz+4c:oszoz
drwer

Problem 3-29. A thin flat disc of radius R carries a uniformly distributed charge Q.
Determine the potential at point M on the axis of the disc, a distance a from its centre.
The surface charge density is o.

Solution: We divide the disc into thin rings of radius r and thickness dr. The charge Q
1s distributed uniformly, so the charge contained in each ring is

dQ =2xrodr.
M All parts of this charge element are at the same
distance s from point M so that their
contribution dy to the electric potential at M
5 1s given by the expression

do = 1 2«te
4me s
The potential ¢ at point M is found by
E dr integrating over all the strips into which the disk

R can be divided, or

R
o ¢r
=— |—dr
P Zajs

o

This integral is readily evaluated when we use s as a variable. As long as we can write
s =a+r
we obtain for the resultant potential

___UR r _rrm sds o
@ ™ !mr-u_—a2+r2 dr__i; -!- e Eg(‘} "+ R -~a)

Because of the symmetry it is obvious that the electric field will have the same
direction as the axis of the symmetry (oriented outward for a positively charged ring).
For its magnitude we obtain

This 1s the same result as we obtained in problem 3-19 using Coulomb's law.
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Problem 3-30. A particular conducting sphere of radius 7, is surrounded by a
spherical dielectric with the inner radius 7, and the outer radius ,. The permittivity of
the dielectric is &, and the permittivity of the surrounding medium is &, where ¢, (e,.
Find the dependence of electric displacement D, electric field £ and potential ¢ (with
respect to infinity) on the distance from the centre of the sphere. The charge of the
conducting sphere is Q.

Solution: a). Electric displacement:

From Gauss' law we have
for r<p:

€4 D(r)=0
forr>r:

J'(.!)Dds =D[[ds, =

=D4nr’' =Q

or

, \ Dir) '_"4?#

b). Electric field:

for r<rn: E(@)=0

for r{r{r,

ek Er)=-2-

d7e, r

ol

and for r)r,

! B =21

4ze 1

\ c). Potential:

5

IA

LI —r for r

: ,, 4 . i y
¢(r)=!Edr =!Edr+£Edr+£Edr=0+4iz },[—rTr+4—g£—. ﬁ_;;,

171




After a little rearrangement we obtain

1 1 (1 1
== F— | =i~ — || = CONSE.
dx |gn, & \F &

olr)=-2 4

For r)r, we have

which we can rearrange as

The dependencies of electric displacement, electric field and potential on the distance
from the centre of the sphere are shown in the previous figures.

Problem 3-31. Determine a formula for the capacitance of a parallel-plate capacitor.
The capacitor is charged so that the first plate has a charge +( and the second plate
has a charge -Q. The surface charge density is o.

Solution: Each plate of a capacitor has an area § and the two plates are separated by a
distance d. We assume that d is small compared to the dimensions of each plate, so
that the electric field is uniform between them. As long as the surface charge density
is o, the total charge is Q = 0.5. We saw earlier ( problem 3-25) that the electric field
between two closely spaced parallel

plates has the magnitude E =% .

a -a The voltage in the homogeneous electric
field is
Fay ™ U=Ed==d
—_ &

Thus, for the capacitance in terms of
the geometry of the plates we obtain
= —Q— =g —'g

U d
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Problem 3-32. Determine a formula for the capacitance of a cylindrical capacitor. This
capacitor consists of two coaxial cylinders of radii R, and R, and length /. Assume
that the capacitor is very long (that is /> > R,) so that we can ignore the fringing of
the field lines at the ends for the purpose of calculating the capacitance. The capacitor
is charged so that one cylinder has a charge +( (say, the inner one) and the outer one
has a charge -Q.

Solution: We need to determine the voltage between the cylinders in terms of 0. To
do this we determine the electric field using Gauss' law. As a Gaussian surface we
construct a coaxial cylinder of radius 7 (R { r( R,) and length /. No flux passes
through the end caps of the cylinders, so it all passes through the curved surface. Since
E is uniform over this surface, whose areais 27/, Gauss' law gives

ﬁEdS»——EgdSn=E2wrl=—Q— - or Bt B
) ) F 2xelr
.;Q ' ‘ The voltage between the cylinders
.-:\‘-—-._____.._f_.___ N R, R,
[\ a U=IEdr= Q ydr_
U ' H 2xe iy
\
fa— i
; 27el R
Finally the capacitance is 4 € o oXE
v In—Rl
- R
We can also express the capacitance per unit of length of a coaxial conductor as
C 27xe
C=— =
PR
i

Problem 3-33. Determine a formula for the capacitance of a spherical capacitor which
is formed by two concentric conducting spheres. The radius of the inner sphere is R
and the radius of the outer sphere is R,. The charge of the capacitor is Q.

Solution: The voltage between the spheres is

Thus, for capacitance we have

m C=418~R§:&R‘—
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Problem 3-34. The distance between the plates of the parallel-plate capacitor is
5% 10" m. The area of each of the plates is 2 m’. The potential difference between

the plates of the capacitor, which is placed in a vacuum, is 10* V. Determine:

a) the capacitance of the capacitor,

b) the charge on each of the plates,

¢) the surface charge density,

d) the electric field between the plates,

e) the electric displacement between the plates.

Solution;
a) The capacitance of a parallel-plate capacitor with a vacuum as a dielectric is
C =g, .
d
After substituting we obtain
-12
c=88x10 X3 _ 5505107 F=354nF
5x10
b) From the expression for capacitance we determine the charge of the

capacitor
Q=C.U=354x10"" x10' =3.54x10"° C

¢) We can determine the surface charge density of the parallel-plate capacitor
as

.
g oul I gy iy /2
h 2 m

d) The electric field between the plates of the parallel-plate capacitor is

& B85x107"
We can obtain the same result using the formula

¢) Finally the electric displacement between the plates is

D=¢,E=885x10" x2x10° =1.77 x10™" C/l
: m

Problem 3-35. Using the expression for the density of the energy of the electric field
show that the magnitude of the polarisation vector is equal to the sum of the dipole
moments per unit of volume of dielectric material.

Solution: The density of the energy of the electric field in a homogeneous and isotropic
dielectric material is

w, = —12- g, ¢, E
The density of the energy of the electric field in a vacuum is
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1 2
Wy = EEOE”

The difference in the density of the energy of the electric field in dielectric material and in a
vacuum is

wD_w():%EO(Er _])E?':‘él“go’dzz (1)

where x= & — 1 is the electric susceptibility.

In order to solve our problem we must consider the time-average distribution of the electrons
on their orbits as a kind of spherically symmetric electron cloud enveloping the nucleus. The
centre of the negative charge of the cloud in the absence of an applied field is coincident with
the centre of the positive charge. When a field is‘applied, the cloud is shifted by a distance /.
Hence an electric dipole originates, with the electric dipole moment p = QI

Let us suppose that the force F causing the displacement of the electron cloud with respect to
the nucleus is proportional to the displacement / or F= - K1, where K is the
proportionality constant. This force can also be expressed as F — Q E. From the balance of
these two forces we can express the constant X as

K= ,Qlﬁ (2)
The work that must be done to create one electric dipole is
1 ¢ of

! 1
A=[ Fl=[ Kldl=——KI*=

: : 2 2 K
where the negative sign expresses the fact that the energy is used. If the volume density of the
electric dipoles is 7, then the work that must be done to form them also expresses the density
of the energy per unit of volume of dielectric material, or

2 2
nA = ng & 3)
2K
From comparison of equations (1) and (3) we obtain
nQ’E* 1 2
= —g,kE
2k 20
which we can rewrite as
i Z
o ? @)

The polarisation vector is defined as P=¢,xE . The magnitude of this vector with respect to
equation (4) therefore is

K QOFE
Thus we see that the magnitude of the polarisation vector is equal to the volume density of the
electric dipole moments. '

2 2
P=————"Q £ El—an=np

Problem 3-36. Charges 0,=300x10°C and Q,=750x10°C are placed on two parallel-
plate capacitors of capacitance C, = 100 pF and C, = 50 pF, respectively. The upper
plates have charges of opposite polarity.

1) Determine the voltage on each of the capacitors.

2) What happens if only the lower plates are connected together?

3) What happens if the upper plates are also connected together?
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4) Determine the decrease in the energy stored in the capacitors and explain

what happened with this energy.
Solution:
T =—% _ U, = %Z—
U =3x100V U, =15x10'V

2) Nothing will happen. The charges on the lower plate are bounded by the
charges on the upper plate, which cannot move. :
3) In this case we have two capacitors connected in parallel. The charges are
partially balanced. The total charge on both capacitors (for example on the
~ upper plates) is e -
0'=—-0Q+0,=45x10" C

C'=C +C,=150%x10"" F
The voltage U’ on both connected capacitors is

y =9
ol 2 X0 s 10

C' 150%x10°"
Q' =CU =1x10"" x3x10’ =3x107 C

| 0! =C, U =5%x10" x3x10° =15x107 C |
4) The energy of the capacitors before their connection is

W, =%C1U: =-12—1x10“'° x9x10° =4.5%107" J

W, =%C2 U, =-;-5x10'“ x 225X 10° =5.62%x10 " J

The energy of the two capacitors is therefore
W =W, +W, =6.07x10"" J

The total energy of the system of two capacitors connected in parallel is

W'=-;:(q +C)U” =L15x107° x9x10° =6.75x107" J

The decrease of the energy is :

AW =W — W' =(60.75-6.75) x 10~ =54 %107 J
This energy is dissipated as the heating of the connecting wire, a flash of
light, electromagnetic radiation, sound etc. '

N | =

Problem 3-37. Determine the electrostatic potential energy contained in the electric
field around a spherical conductor with a charge Q. The radius of the sphere, which is
surrounded with a homogeneous dielectric material with permittivity €, is R.

Solution: The total electrostatic potential energy contained in any electric field 1s
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W=-;—I i j eE*dv

where the integration is performed over all charge -free space in which the field exists - that
is, over all space outside the sources that produce the field. As long as the charge is uniformly
distributed on the surface of the sphere, the electric field around this sphere is the same as the
electric field of the point charge, which is placed in the centre of the sphere:

| drer
With respect to spherical symmetry, it is more suitable to solve the problem in spherical co-
ordinates. In this case the elementary volume is expressed as

dv = r’ cospdrdpdd
and the energy contained in the field is

: v
Note: The same result can also be obtained from the expression W = 2C where

for C we substitute the capacitance of a single conducting sphere.

Problem 3-38. Two identical balloons filled with helium carry a small weight of massm =5g
(see the figure). The system is in equilibrium. Each of the balloons has the same charge Q.
Determine this electric charge.

a=680cm

i ]
1

Problem 3-39, In the Bohr's model of the hydrogen atom the electron revolves in a circular
orbit around the proton. Determine the number of revolutions of the electron per 1 s if the

radius of the first circular orbitis 7 = 5.28x 10 “om.

f= - —6.6x10" 5™

i 3 3
27r,/49r o1,

Problem 3-40. Two charges 0, = 12x 10~ C and 0, = -12x 10"’ C are 10 cm apart,
Determine the electric field at points A, B and C ( see the following figure). Suppose that
g=1 ' _ A

177




[EA =9.7x10' V/ | [E. =6.2x10° 74 [E. =108 x10' V/ |

©
5 5
Q
B G4 A (o8}
4 cm 6cm Lem

Problem 3-41.A point charge +Q is placed at a distance a from the second point
charge +90. Determine the co-ordinate x of the point between the charges in which
the resultant electric field is equal to zero.

[x =0.25 4]

Problem 3-42. A thin, ring-shaped object of radius R holds a total charge ~(
distributed uniformly around it. Determine the electric field at the point on its axis, a
distance r from the centre. The object is placed in a vacuum.

E= or %
4x %.‘,[,(R2 + rz)
Problem 3-43. A cube of side / is placed in a uniform electric field £ with edges

parallel to the field lines. What is the net flux through the cube? What is the net flux
through each of its six faces?

[zem, EPR, —EPR, 0, 0,0, 0]

Problem 3-44. Find the work done by the field in moving an electric charge of ¢’ in
the field of a charge g (at the origin) from (x, y, 2) = (-1, 2, -3) to (2, -1, - 4).

[A = 0.049 _ﬂmJ

47¢g,
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Problem 3-45. Derive an expression for the electrostatic potential energy of a charged
particle q in a uniform (constant) electric field E = E i.

[AW =qE, (xa - x)]
Prol;lém. 3-46. Compute the electrostatic potential energy of a sphere which possesses

an electric charge Q. The radius of the sphere is R, the potential of the sphere with
respect to infinity is ¢.

r 1 ]
¥ =227

Problem 3-47. A very long straight wire possesses a uniformly distributed electric
charge Q. The linear charge density is £. Determine the potential ¢, at the distance r

from the wire.

[gg, S 3 Injr| +C]

TE

Problem 3-48. The electric potential of a very large metal plate is expressed by the

acosa b . .
=——— + — where r and « are polar co-ordinates. Determine

r r
components E_and E_ of the electric field at any point.

[E =L(b+2a008a)j| . |: “__asina}

7
l_ r r

formula ¢

Problem 3-49. Determine the total electric charge Q of the Earth and its surface
charge density o if the gradient of potential at the surface of the Earth is 100 V/m and
the radius of the Earth is 6378 km. Suppose that &, =1.

[Q ~4.5x 10" C] [a =88%x107" C/z]

m

Problem 3-50. A point charge Q = —107° C is located at point (-1; 0; 0) of the
orthogonal reference frame. The positive charge of equal magnitude is placed at point
(1; 0; 0). Calculate the electric flux through the circle lying in the plane y,z with the
centre in the origin of the reference frame. The radius R of the circle is Im.

R % az)z

( ]
8, =L1-—% _|-33x10' V.m
oL
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Problem 3-51 The distance between the carbon [C] and oxygen [O] atoms in'the group C=0
which occurs in many organic molecules is 1.2x107°m and the dipole moment of this group
is p=8x10*C.m.

Calculate:
a) the effective net charge on the positive carbon and the negative oxygen atoms,

b) the potential at the point the co-ordinates of which are: r=9x1 0""m and a=180°
(see the figure of problem 3-28).

lo=6.6 xlO‘”C! [o=-0.0887]

Problem 3-52. The relative permittivity of helium at a temperature of 0° C and a pressure 0,1
MPa is 1.000074. Determine the electric dipole moment of the helium atom in the
homogeneous electric field E=1V.m™ .

[p: 24x 107 C.m

Problem 3-53. Two parallel plates of area 1 m” are each given equal but opposite charges 30
uC. The space between them is filled with a dielectric material of relative permittivity £, = 1,7.

Determine:

a) the electric field E in the dielectric material,

b) the induced surface chargeo, on each dielectric surface,

c) the electric field E, in the dielectric material due to the free charge,
d) the electric field £, due to the induced surface charge.

[E=2x 107/ ] b=124x10°C/ |

|E, = 3.39x 10° V/n} [E,.: 1.39x 10° %]

Problem 3-54. A parallel plate air capacitor has plates of area §= 3x 10 °m" and a
separation of 4 = 3 mm . Between the plates, isolated form the ground, is placed another
metal plate of the same area and thickness s, = 1 mm . A battery charges the capacitor to a
potential difference of 600 V and is then disconnected. The metal plate is then removed.
Determine the work that must be done to remove the plate.

2
!_A= 85U :slleO‘ﬁJ-I

L 8k J

Problem 3-55. The plates of a parallel-plate capacitor of capacitance C which is charged on a
potential difference U attract each other with a certain force. Derive the formula for the
magnitude of this force.

r 72c ]
iF:H, i)
L 2 x

| PRt
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