l. KINEMATICS

1-1 Velocity

Let us suppose that a particle moves along the x axis .of a rectangular co-
ordinate system and let Fig. l-1 represent a graph of the position x of the
particle versus time t .,

Figure 1 -1

At time tl the particle is at position X3 and at time t2 at position x v

P ix, tl) and Pix,, t2) represent these two points on the graph. The ratio A x/At
is the slope of the straight line Plpé' This ratio is also the average velocity of
the particle during time interval At = t; - 1,. We can conclude that the average
velocity of an object during any time interval At = tz -t is equal to the slope
of the straight line connecting the two points (xq, tl) and (x5, tz) on an X Vs.
t graph. )

Now we can give the definition of the instantaneoue velocity at a given instant
{say t,, at which time the particle is at Xy) as the limiting value of the
average velocity as At approachee zero. And we see that it equals the slope of

the tangent to the x vs. t curve at that time (which we simply call "the slope
of the curve" at that point).

Hence
Ax dx
V = 1lim  e—— = ee— (1-1)
At40 At at

This limit is called the derivative of x with respect to t . Eq. (1-1) is the
definition of the velocity for one-dimensional motion. We may say that the velocity
of an object is the rate at which its displacement changes with time. The unit of
the velocity is the unit of displacement divided by the unit of time. In the SI
system it is meter per second - m/s.

If an object moves with constant velocity over a particular time interval the
greph of x vs. t will be a straight line whose slope equals the velocity.



1-2 Acceleration

An object whose velocity is changing in time is said to be accelerating.
Let us consider a graph of the velocity v vs. time t as shown in Fig. 1-2.

v A

\J

Figure 1-2

The average acceleration Av/At over a time interval At = t,- 4y
by the slope of the straight line connecting two points P, and P, .

is represented

The instantancous acceleration at any time (say tl) is equal to the tlope of the
tangent to the v vs. t curve at that time.

So, the instanteneous acceleration is defined as the limiting value of the average
acceleration as Ot approaches zero.

Hence 5
a=1mél=d_"=d_(dl)=_§, (1-2)
At+0 At dt dat dt dt

Here dv/dt is the derivative of v with respect to t and dzx/d'c2 is called the
second derivative of x with respect f:o time t . Eg. (1-2) is the definition of
the acceleration for one-dimensional motion. We may sey that the acceleration of an
object is the rate at which its velocity changes with time.

. s . 2
The unit of the acceleration in the SI system is meter per second squared- m/s“.

X A v A

v = slope of line

a) b)
Figure 1-3

If the velocity of an object ig constant then its acceleration equals zero,
since Av = 0. The x ve. t graph for constant velocity is now a straight line
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whose slope equals the magnitude of the velocity (Fig, 1-3a). The v vs. t zraph
in this case is also & straight line but its slope is zero, so the straight line
is parallel to the t axis (Fig. 1-3b).

1-3 Uniforml Yy Accelerated Motion

A uniformly accelerated motion occurs &s the magnitude of the acceleration ie
constant and the motion is in a straight line. In this case the instantaneous and
average acceleration are equal.

To simplify our notation we suppose that initial time equals zero, so, we put
t) = 0. Let t, =t bDe an elapsed time. The initial position (xl) end initial
velocity of an object are now represented by Xy and A respectively and at time
t the position and velocity of an object will be called x and v respectively

(rather than X, and v2).
The average velocity during time t will be (it is signed with a bar over)
v = —2 (1-3)
t

Because the velocity increases at a uniform rate, the average velocity will also
be midway between the initisl and final velocities:

v. + Vv
vy = 20 (1-4)
2

V-v
a = 2, (1-5)
t
According to the definition of an acceleration given by Eq. (1-2) we have
vit) = Lfa at + v, = at + v, (1-6)
where a 1is given acceleration which is constant and v is the initial

o
velocity at time t = 0.

Now we can cslculate the position of an object for any time t when it is mov-
ing with constant acceleration. From Egs. (1-1) and (1-6) we obtain

= = P Gy -
x(t) -jv at = j(at+vo) at = et + vt + x4 (1-7)
where x, and v, are initial position and initial velocity, respectively, of an

object at time t = 0. Egs. (1-6) and (1-7) are two useful ones: of uniformly
accelerated motion.

1-4 Displacement, Velocity and Acceleration

Vectors

Suppose a particle follows a path in the =xy plane as shown in Fig. 1-4. At
time t the particle is at point Pl and at time t2 it is at point Pz. The .
vector ?1 is called the position vector of the particle at time t, and that T,
is the position vector at time t2 (any position vector represents the displacement
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of the particle from the origin of the
y ? coordinate system.) The vector AT is
called the dieplacement vector. It is
defined as the vector representing change
in position of a particle:

— -~ -
Ar = r,-1r -

This vector represents the displacement

v

during the time interval At = ty =ty .

X
. In vector notation the both vectors
Figure 1-4 can be expressed (in general , for three
dimensions):
— - rd e
rl=xli+ylj+zlk

-2 -
where x;, y; end z; are coordinates of the point P, end i, J and ¥ are unit
vectors of unit length along the chosen coordinaste asxes (see appendix). Similarly,

— - - - —
r, = X, 1+y,J+z2, k.
Hence
- - - -~
AT = (xz-xl)1+(yz—yl)3+(za-zllk. (1-8)

The average velocity vector over the time interval At = t, -ty is defined as

— - -
3 . Ar i} Ty, =T
At t, -ty

where AT is the change in the position vector during time interval At .

Note that the magnitude of the average velocity vector in Fig. 1-4 is not equal
to the average speed which is the actual distance traveled A/ divided by At. Only
in case of a motion along a straight line in one direction, the average s;;eed and
the average velocity are equal. However, in the limit At —0, Ar always approaches
AL, so the instantaneous speed always equals the magnitude of the instantaneous
velocity vector at any time.

Now let At approach zero so that the distance between points P, and P; ap-
proaches zero, too. We define the velocity vector (the instantaneous velocity
vector) as the limit of the displacement vector as the time interval At is allowed
© to approach zero:

Vo= 1a LF . &€ (1-9)
Ats0 At at
y A ' So, the velocity vector is defined as the
gerivative of the position vector with respect
Py to time. It represents the rate of change of
v the position vector.
’ i The direction of Vv at any moment (say,
at Pl) is along the line tengent to the path
at that moment (Fig. 1-5).
0 > Eq. (1-9) can be written in terms of
X
Figure 1-5 components as
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ge

- R - =¥ pod a . o
v o= & . 1+§13+d—zk=vx1+v F+v k (1-10)
at at at at y z
where
. gx - _ dz
T = at " vy = i{- and vV, = = @erethe x,y &nd z

components of the velocity vector, respectively, and ; , J and ; are unit
vectors that are constant in magnitude and direction. The magnitude of the velocity

vector can be expressed as

. 2 2 2
come ez - @@t
dt dt dt

In a similar way the average acceleration vector over a time interval At is
defined as

— - -
—E+= Av _ Vo - V)
At ty =t

where AV is the change in the instantaneous velocity during that time interval.
In general, ?2 may not be in the same direction as ?1 . Then AV may be in

different direction from either 71 or ?2 tsuch as in Fig. 1-6).

Y A

\J

Figure 1-86

The vectors ?l and ?2 may also have the same magnitude but different direc-
tions, and the difference of two such vectors will not be zero. Hence, acceleration
can result from either a change in the magnitude of the velocity or from a change
in direction of the velocity, or from a change in both.

The acceleration vector (the instantaneous acceleration vector) is defined as
the limit of the average accelerstion vector as the time interval At is allowed
to approach zero:

v &Y & & (1-12)
At-0 Ot at 2

ID{,.

dt
end is thus the derivative of the velocity vector vV with respect to time t or
the second derivative of the position vector T with respect to time.It represents
the rate of change of the velocity vector. Using components gives us:

dv dv Gv_ _,
'{3’: ﬁ = —31’1»——13'4'-—21( =
dt dt at at
(1-13)

2 2 2
d“x > d rd dtz > 3T = g

= i+ J+ k = a_i+a j+ta k
at? at at2 x y z



where
av_ d2x

2
dv a%y av d“z
= =Xy = Yy . = —2
a 2 e = a = = a = - =
x it at2’ J at  ate < at  atl

are x , y eand 2z components of the acceleration vector, respectively.

Note that acceleration of a motion will be nonzero not only when the magnitude
of the velocity is changing but also if its direction is changing.

The magnitude of the acceleration vector can be expressed as

2 2 2
dv a d
a =121=\/32+32+32 =\[(__1) +<_‘.'x +(._.‘.'.2> -
. X J N dt at dt
2 2 2 .2
2 2 dz
< \l/d X) + (d +< ) (1-1
= v —-g —s . -14)
\/<dt2 dt ) dt

(In general, we will use the terms "velocity"” and "acceleration” to mean the
instantaneous values. )

1-5 Unifornm Circul.ar Motion

An objéct that moves in a circle at constant speed v is said to undergo uni-
form circular motion. Although the megnitude of the velocity vector remains
constant in this case, its direction is coniinually changing. At each point the
instantaneous velocity vector is in a tangent
direction to the circular path (Fig. 1-7).

Since the acceleration vector is defined as
the rate of change of the velocity vector,a change
in direction of the velocity vector constitutes
an acceleration vector. Thus an object undergoing
uniform circular motion is accelerating. The
acceleration of this.motion is defined by

-

- -
2 = lim L&¥ - & (1-15)
At+0 At at’

where AV is a change in velocity vector during

Figure 1-7
9 the short time interval At .

In Fig. 1-8 during time interval At the particle moves from the point A to the
point B, covering the arc of the distance A/ that subtende an angle A¢ . The change
in the velocity vector equals AV = ¥ - V, - As time interval At approaches zero,

AN¢ =and Ay epproach zero, too,
and V will be almost paralell
. to —v'o and AV will be essen-
Vo tially perpendicular to them.Thus
AV points toward the center of
o the circle. Since the accelera-
tion @ , by Eq. (1-15), is in
the same direction as AV , it
must point toward the center of
the circle, too (Fig. 1-7).There-
fore, this acceleration is called

<#

Figure 1-8

centripetal or radial acceleration.
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Now we determine the magnitude of the centripetal acceleration. The vectors 7;,

vV and AV form a triengle that is similar to the triangle ABC (Fig. 1-8). Thus we
may write ’

Ay _ AL L Ay = Xag.
v r r

To get the magnitude of the centripetal acceleration we calculate the limit

a = lim LY . 1 L AL
ats0 Dt At40 r Dt

Since 1lim ééf =v and v and r are the constant quantities, we obtain the
At+0 t
formula for the magnitude of the centripetal acceleration

- v -
& = 4 . (1-16)

To summarize, a particle moving in a circle of the radius r with constant speed
v has an acceleration directed toward the center of the circle whose magnitude is
given by Eq. (1-16). For the uniform circular motion velocity and acceleration
vector are perpendicular to each other since the velocity vector v is tangentisal
to the circle and the acceleration vector points toward the center.

1-6 Nonuniform Circular Motion

If the speed of a particle revolving in a circle is changing, there will be a
tangentisal acceleration, 3& , 8s well as the radial (centripetal) acceleration, Bh "
The tangential acceleration arises from the change in the magnitude of the velocity

and has magnitude

ap = , (1-17)

whereas the radial (centripetal) acceleration arises
from the change in direction of the velocity and has
magnitude

= X, (1-18)

The tangential acceleration always points in a direc~
tion tangent to the circle, and is in the direction of

motion (parallel to vV J if the cpeed is increacing.
If the speed is decreasing, 3&_ points antiparallel
to ¥V . In either case, E& and ER are always perpendi-
cular to each other, and their directions change
continually as the particle moves along its circular path. The total vector accele-
ration, @ , is the sum of these two:

e - -+

a=ap+ap. (1-19)

Figure 1-9

Since Ek and 3& are always perpendicular to each other, the magnitude of & at
any moment is

a = a,f + ag ) (1-20)
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l-7 Angular Variables of Circulasar Motio n

We consider a particle rotating in a circle of radius r (see Fig. 1-10). The
particle has moved along the circle a distance /¢,
v and ite angular position has changed by angle ¥
Angle ¢ is given in radian. One radian (abbreviated
rad) is defined as the angle subtended by arc whose
[=T® Jength £ is equal to the radius r . So, in general,
eny angle ¢ is given in radians by

¢ = L. (1-21)

We can see that the radian is dimensionless (has no
units) since it is the ratio of two lengths.

Angular velocity: 1let %i end Y, represent the
Figure 1-10 . angular positions of the particle at times ty and t,,
respectively. Then we define the magnitude of the

average angular velocity as

2-% _ Ay
where ZBq'is the angular digplacement during time interval At. Tne megnitude of the
instantaneous angular velocity is the limit of this ratio as At approaches zero:

?

W = 1im &Y . ¢ (1-22)
ats0 At at

We see that an angular velocity is defined as the rate of change of the angular
displacement. The dimension of the angular velocity is a'l.

Angular acceleration is defined as the change in anguler velocity divided by the
time required to make this change. Let W and a& represent the instantaneous
angular velocity at times tl and - t2 » respectively. Then the magnitude of the
average angular acceleration is defined as
Wy =Wy Aw

ty =ty At

£ =

So, the instantaneous angular acceleration is defined as the limit of this ratio as
Dy approaches zero:

Aw '
E= lin =2 - 4L (1-23)
Ats0 At dt

We see that an angular acceleration is defined as the rate of change of the angular
velocity. The dimension of the angular accelerstion is 5'2.

Nbﬁ we can relate the angular quantities « and & to the linear velocity and
tangential acceleration of a particle moving in a circle, respectively.

With respect to Fig. 1-10 we can write

v=ll-=rgf or vV = ro . (1-24)
dt dt

Thus the magnitude of the linear velocity of a particle moving in circle ies equal to
the radius of the circle times the magnitude of the angular velocity.

The magnitudes of the angular acceleration € end tangential acceleration ap are
related (via Eqs. (1-17) and (1-24)):
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- 4@v dg) - .
= 2 =z p or = r &. (1~-25)
1 dt dt o1 ?

The radial acceleration is equal to évia Eqs. (1-18) eand (1-24))

N 2
ap = —4/— = rw°. (1-26)

Sometimes it is useful to consider the frequency of rotation. By frequency f,

we mean the number of revolutions per second. Since one revolution corresponds to
an angle of 2 N redians the frequency is given by

= 3“1’? or 4 = 2Tf . (1-27)

The dimension of the frequency is s .
The time required for one revolution is called the period T. It is related to the
frequency by
o= A, (1-28)

Example 1: The motion of a particle is described by the vector equation

k (=]

2) = (2t+5)’i’-t23’+-§-t3

where the parameter t is time.
Determine for any time t :

a) its coordinates and distance from the origin,
b) velocity and acceleration vectors and their magnitudes,
¢) the tangential acceleration as well as the radial one.

Solution:
a) X(t) = 2t + 5, yit) = - 12, 2(t) = % t3;

these formulas represent so called parametricequationsof the motion.

Distance from the origin at any time is given by the magnitude of the position
vector (its absolute value), so

rit) = V + y + 28 \[(Zt +5)2 t6 [m]

b) Y = L 2 aT-2t T3 [m.s]
dat
>
g = L - _2Fv2tE [m.s7?]
at _
vit) = \[v§+v§+v§ = \/;,+4t2+t4 = t% 42 [m.s-ll
‘a(t) = 'Vai + ag + ai = \14 + 412 = 2\1 4+ ¢2 [m.s'z:l

c) aT-= d—'— = 2t I:m.s 2:’

N oS

We see the radial acceleration of this motion does not depend on time. It is
constant for all time of the motion.
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Example 2 : The acceleration of a motion increases at a uniform rate. The
motion starts from rest and at time t; the magnitude of its acceleration
equals &y .

Determine the dependence of the velocity and the trajectory of the motion on
time t .

Solution: The given motion is nonuniform one, but its acceleration varies uniformly
with time, thus we may write for it

alt) = kt .
Where goefficient k cen be determined from given values.
Hence
a
kK = tl .
1
Then
t t
a a
v\t):]a(t)dt:f—ltdt= ltz,
0 ot &y
and
t t
a a
s(t) =fv(t) at = j L2t = 243,
0 0 2t1 6t1

Example 3 : The angular displacement ¢ of a particle moving in a circle
depends on time as

i\ = 3
Yy = k1t+k2t

where k, = T/10 s'l, k, = T/40 e 3.

Determine the dependence of the angular velocity (J as well as the angular ac-
celeration £ of the motion on time t .

Solution: By using the definitions for  and & we can write:

wit) = 2L - ok o+ 3xk,t8
at 172
gt) = S92 = gt
at

Example 4 : A particle moves uniformly along the circle of the radius r
with an angular velocity .

Give an answer on the following questions: what are its position vector, the
velocity vector, the acceleration vector, the magnitudes of the radial and
tangential acceleration.
Solution: The coordinates of a moving perticle are given by
X =rcoswt, y=rsinwt .
So, the position vector of a particle equals
? ¥
Tti=xT+y I+ zk=ricoswt+ jsinwt) .

Then, the velocity vector equals
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"
?(t)=§f=-?rwsmwt+?rc\)coswt.
And the acceleration vector equals
=
Ing i .
3\t)=-d—!=-1rw2coswt-arw2 sing@t =
dt

- d -
-rw2(i coswt+ jsinut) = -t.)zr .

It is clear that the acceleration vector has an op-

, posite direction than the position vector, that is,
Figure 1-11 ‘ it points toward the center and thus it is identical

with the vector of the centripetal acceleration. So,

we have a = ;§. Because of 2'= E& + gk, then the vector of the tangential ac~

celeration must be equal to zero, 3& = 0.

S0, the magnitude of the total acceleration equals that of the centripetal ac-

celeration.

Hence

-
=lal= wer .

Example 5 : 4 flywheel rotates with frequency n = 1500 revolutions per
minute. Due to braking its motion becomes an uniformly retarded one and it finishes

during time t, = 30 seconds after the braking started.
Determine the angular acceleration and the number of revolutions performed from
the beginning of breking till stop of the motion.
Solution: An instantaneous value of an angular velocity of the uniformly accelerated
circular motion is given by
Wwit) = Wy + £t

where @, is an initial angular velocity of this motion. For our case it equals

wo=27rf=2arlg% = 50 Ts L

.

For time t  W(t) must be zero, so

Wity ) = Wy + Et, = 0.
Thus an angular acceleration equals
W
= o L 0T |5 g2
& T 30 3 L& .
o
The angle subtended curing time t, equals
tcJ t'o 5
= J - - 1 -
¢, = jw\t) at = J (L +EL) at = Wt + 585 =
o]
= 50. 7,30 - £ M.900 = 1500 1 - 750 ¥ = 750 T .
The number of revolutions performed during time t, = 30 s equals
\f’o 750 T
N = — = — = 375.
27 2T
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Example 6 : Adisc wheel starts to rotate from rest with constant angular
acceleration. At time t = 20 s its frequency equals 200 revolutions per minute,

Determine the angular acceleration of the motion. How many revolutions are per-
formed during this time?

Solution: The angular velocity of the wheel equals W = 2 X n, where n = 20 ..
presents the number of revolutions per second.
So, the angular velocity at time t = 20 s equels
W= 2%n = -2—’-6”-")3-99 : 21671,

Since the motion starts from . rest the angular acceleration will be equal to

21

_ -2
20 - 1,05 8 ~.

& = L
t
The angle subtended during time t = 20 s equals

t t
= & =1:42 2
¢t) = Jw(t) at = jf_t dt = 317 =
0 0

—

£ 1,05.20° = 210.

So, the number of revolutions during time t = 20 g equals

V]
(o]

N = 2L

l

= 33,4.

n
=

2. DYNAMNICS

2~1 The First Law of Motion

In Chapter 1 we have discussed how motion is described in terms of velocity and
acceleration. In this Chapter we want to deal with the question of why objects move
as they do, what causes a body to accelerate or decelerate. We can answer that a
force is required and therefore we investigate the connection between force and
motion. A force has direction as well as magnitude and is a vector that follows the
rules for vectors. We represent any force on a diagram by en arrow snd its length
is drawn proportional to magnitude of the force.

Newton’s snalysis of motion is summarized into three laws of motion. The first
lew of motion states that

every body continues in its state of rest or of uniform speed
in a straight line unless it is compelled to chenge that state
by forces acting on it.

The tendency of a body to maintain its state of rest or of uniform motion in a
straight line is called inertia. As a result, the first lew of motion is often
called the law of inertia.
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