1 OSCILLATIONS
1.1 Oscillations of Spring

Let us assume an object oscillating on the end of a spring. We assume that the mass of
the spring can be ignored and that the spring is mounted horizontally so that the object of
mass m slides without friction on the horizontal surface (see Fig.1-1).
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Figure 1-1

Any spring has a natural length at which it exerts no force on the mass m. It is called
the equilibrium position. If the mass m is moved either to the left, which compresses
the spring, or to the right, which stretches it, the spring exerts a force on the mass m which
acts in the direction of returning it to the equilibrium position. This force is called
the restoring force. The magnitude of the restoring force F is found to be directly
proportional to the distance x the spring has been stretched or compressed

F=—kx. (1-1)

This equation is accurate as long as the spring is not compressed or stretched beyond
the elastic region. The minus sign indicates that the restoring force is always in
the direction opposite to the displacement x. The proportionality constant kin Eq.1-1 is
called the spring constant. It represents the force needed to displace the system from
equilibrium of the unit length. Its dimension is [A]=Nm™ .

Let us examine what happens when the spring is stretched a distance x = A4 and released.
Its initial speed equals zero. The spring exerts a force on the mass m that pulls it toward
the equilibrium position (see Fig.1-2).

The mass is accelerated and it passes the equilibrium position with maximum speed v, . As
the mass reaches the equilibrium position, the force on it equals zero. As it moves father to
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the left, the force on it acts to slow the mass and it stops at x = ~A and begins moving
back in the opposite direction until it reaches the original starting point x = A and it
repeats the motion.
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Figure 1-2

The distance x of the mass from the equilibrium point at any moment is called
the displacement. The maximum displacement, the greatest distance from the equilibrium
point, is called the amplitude A. The motion from some point back to that same point, say
from x = A to x = —A back to x = 4, is called one cycle. The period T is defined as the time
required for one complete cycle. The frequency £ is the number of complete cycles per
second. Frequency is usually specified in hertz (Hz) where 1Hz = 1 cycle per second. It is

evident that f L and T =—!— ;
r f
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1.2 Simple Harmonic Motion

Any vibrating system for which the restoring force is directly proportional to the negative
of the displacement (as in Eq.1-1) is said to exhibit simple harmonic motion and such

a system is often called a simple harmonic oscillator.
Let us now determine the position x as a function of time. We make use of Newton’s

second law F = ma and we have

2
m:;tfz—kx . (1-2)

where m is the mass which is oscillating.

After rearranging we obtain

d’x k
Lo 4+Zx=0, (1-3)
di> m

which is known as the equation of motion for the simple harmonic oscillator. General

solution of this differential equation has form (as known from mathematics)

x(t)=acoswt+bsinwt , (1-4)
where a and b are arbitrary constants and the constant w is called the angular frequency.

If we differentiate this function twice and substitute for x and its second derivative into
Eq.1-3 we get for @ |

W =— [0]=s". (1-5) ;

So, the function in Eq.1-4 is the solution of Eq.1-3 if and only if Eq.1-5 holds.

The speed of the harmonic motion equals

v(t):%:-aa)sinwt+ba)cosa)t . (1-6)

In real physical situations, the constants a and b are determined by initial conditions.
Suppose, for example, the mass starts to move at its maximum displacement x =4 without
pushing it (=0 at #=0). Applying the initial conditions x(0) =4 and v(0)=0 at =0,
we have from Eqs.1-4 and 1-6

x(0)=acos0+bsin0=4,

v(0)=-awsin0+bwcos0=0.
Thus,a=A4 and bw =0 and so 5=0, and the motion is a cosine curve

x(1)=Acoswt .

The equation 1-4 for x(7) can be written in the following more convenient form
x(£)= Acos(wt+9) . (1-7)

The physical interpretation of this equation is simpler than for Eq.1-4. As shown in
Fig.1-3, 4 is simply the amplitude (which occurs when the cosine in Eq.1-7 has its |

maximum value of 1) and ¢, called the phase angle, tells how long after or before ¢ =0
the peak at x =4 is reached. For ¢ =0 we have
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x(t)=Acoswt ,
for ¢ =-m/2 we have

x(i)=Acos(cot——72£)= Asinot .

x(1)
/x(l) = Acos(mt+ @)

Figure 1-3

Since the simple harmonic oscillator repeats its motion after the time equal to its period 7
and since sine or cosine function repeats itself after every 27 radians, we have from Eq.1-7
that o I'=2m .

Hence w=—=21f, (1-8)

where fis the frequency of the motion and @ is the angular frequency.

Now we can also write Eq.1-7 as

x(t)=Acos(%?—t+¢j , (1-9)
or x(t)=Acos(2nft+9) , (1-10)
where, because of Eq.1-5
T=27Z‘\/% , [T]=s, (1-11)
1 |k Y
froo— s 1= (1-12)
r\m

It is clear that the frequency and period do not depend on the amplitude. It is also clear that
the greater the mass m the lower the frequency and the stiffer the spring the higher
the frequency. The frequency given by Eq.1-12 at which a simple harmonic oscillator
oscillates is called its natural frequency.

The velocity and acceleration of the simple harmonic oscillator can be obtained by
differentiation of Eq.1-7
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v(t):%:—wAsin(a)t+¢) , (1-13)

d*x  dv 2 2
at)y=—F=—=-w"Acos(wt+9)=-0"x(t) . 1-14
s (w1 +9) ( (1-14)
In Fig.1-4 we plot displacement, velocity and acceleration of a simple oscillating system as

a function of time for the case when @ = 0.

We can see that the speed reaches its maximum of

Vmax :wA:\/EA (1-15)
m

when the oscillator is passing through its equilibrium point x =0 and the speed is zero at
points of maximum displacement x + A4.

The acceleration of the oscillation motion has its maximum value

Ao aali=2 4 (1-16)
m

at x=14 andiszeroat x=0 since at x=0 the restoring force F =—kx equals zero.

Figure 1-4
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1.3 Energy in Simple Harmonic Oscillator

Let us assume a simple harmonic oscillator such as a mass m oscillating on the end of
a massless spring. The motion of this oscillator is caused by the restoring force F=—kx.
The potential energy of the simple harmonic oscillator will be given by

1
U:-jl«“dxz-z-kx2 , (1-17)

where we set the constant of integration equal zero, so U=0atx=0.
The total mechanical energy which remains constant is equal

R P ; (1-18)
2 2

where v is the velocity at a distance x from the equilibrium.
At the extreme points, x = A and x = -4, the velocity v = 0 and all the energy is
the potential energy only

E:%kAZ (1-19)

and we can say, that the total mechanical energy of a simple harmonic motion is
proportional to the square of its amplitude.
At the equilibrium, x = 0, all the energy is kinetic

1
E= —2—mvﬁm . (1-20)

where v,,, represents the maximum velocity during the motion.

Hence, for any point we can write

E:—;:mvz +—;—kx2 :-;-kﬁ :%mvﬁm | (1-21)

From this last equation we can obtain a useful equation for the velocity v as a function

of x :
v=+ /—k—(Az—xz) : (1-22)
m

In Fig.1-5 the potential energy U of a simple harmonic oscillator is plotted. The horizontal
line represents its total mechanical energy £ which depends on A* . The distance between
this line and the U-curve represents the kinetic energy.

E =t U(x)
2
KE
U= 1 kx?
2
PE
~A 0 4 X
Figure 1-5
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1.4 Simple Pendulum

A simple pendulum consists of a small object (called pendulum bob) suspended on the end
of a light cord. We assume that the cord mass can be ignored relative to the mass of

the bob.

The simple pendulum oscillates along the arc of a circle. Its equilibrium point is at
the point O. As it passes through the equilibrium point it has its maximum speed.
The displacement of the pendulum along the arc, x, is given x =/ ¢, where ¢ is the angle
the cord makes with the vertical and / is its length.

The restoring force is equal to the component of the bob weight tangent to the arc

F=-mgsing .

Since F is proportional to the sing and not to ¢ itself, the motion is not simple harmonic
motion. The motion will be simple harmonic only in the case if the restoring force is

proportional to x or to ¢.
But if ¢ is small, then sing is very nearly equal to ¢ if specified in radians (this can be

seen from the series expansion of sing ).

Thus, for small angles we can use approximation

Fﬁ—mg¢=-§x ;

m
where the term —75— represents the force constant £ .

Hence, the period of a simple pendulum is

peamfEoanfl 02
k g

Note, that the period does not depend on the mass of the pendulum bob.

mg cosQ

Figure 1-6
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1.5 Physical Pendulum

The physical pendulum refers to any real body which oscillates around its equilibrium
position. An example of a physical pendulum is shown in Fig.1-7.
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Figure 1-7
The body is suspended from the point O. The force of gravity acts at the centre of gravity
(cg) whose distance from the point O let be 4. To analyse the motion of the physical
pendulum we use the equation of rotational motion.
First, we calculate the torque on a physical pendulum about point O

T =-mghsin@
We know, that the equation for rotational motion states that
2
t=J ag (20 ,
dt
where J is the moment of inertia of the body.
Thus we have
d? Q '
J—%==-mghsing
dr? g
d*p mgh .
or —+——sin@p=0,
drr J ¢

where J is calculated about the axis passing point O. The last equation can be reduced for
small angular amplitudes into form

d*p mgh
P T
i J 7
This is just equation for the simple harmonic motion where the term mih replaces
w* = L3 (compare with Egs.1-3 and 1-5).
m
Thus, o= Jw ,
J
and the period of the physical pendulum for small angular displacement is
=2 _2z . (1-24)
o mgh

Using this result we have an easy way to measure the moment of inertia of an object about
any axis. To do this we measure the period of oscillation about that axis.
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1.6 Damped Harmonic Motion

The amplitude of any real oscillating object decreases in time. The damping is generally
due to resistance of air and friction. Fig.1-8 shows a typical course of such an oscillating
motion that is called damped harmonic motion.
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Figure 1-8

Let us look at this motion in more detail. The damping force opposes the motion and in
many cases can be considered to be directly proportional to the speed:
Fdamp =-bv 5

where b is a constant. For the object oscillating on the end of a spring the restoring force of
the spring is known to be equal F = -k x.

The Newton’s second law states now
ma=-kx-bv
2
or NI P (1-25)
di*  dt

which is the equation of motion for the damped harmonic oscillator.

The solution of this equation can be written in form
x(t)=4e % cosa't | (1-26)
where 4,6 and o' are assumed to be constants and 4 = x(#) at ¢ = 0. To determine
the constants & and ' we take the first and second derivatives of Eq.1-26 and substitute
them into Eq.1-25. After reorganising we obtain:
e [(mé‘2 —ma? —b5+k)cosw't +(260'm—ba')sin a)’t] =10 .
This equation must be equal zero for all times 7 .

First, we choose 7 = 0, then sin®'t =0 and the above relation reduces to

mé? —ma? -bS+k=0 . (a)
Second, we choose =7/2w', then cos®'t =0 and above relation reduces to
26m-b=0 . (b)
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From the relation (b) we have
§=—0 (1-27)

2
ol Pk E. (1-28)
m m \m am?

We can conclude: The Eq.1-26 is the solution of the equation of motion 1-25 as long as &
and o' have specific values given by Egs. 1-27 and 1-28.

and from (a)

Summary, the displacement function x(7) of the damped harmonic motion is given by
Eq.1-26 where constants & and @' are given by Egs.1-27 and 1-28.

The frequency fis equal
' 2
o 1 [k b . (1-29)

We see that the frequency is less and the period longer than for undamped simple harmonic
motion. (But in most practical cases of small damping, o' differs only slightly from
w=~kim ) The constant & =b/2m is the measure of how quickly the oscillations
decrease to zero. The larger b the quickly the oscillations go away. The time #, =2m/b is
the time taken for the oscillations to drop to 1/e of the original amplitude and is called
mean lifetime of the oscillations.

The solution given in Eq.1-26 is not valid if b is so large that b>> 4mk . In this case @'
becomes imaginary and the system does not oscillate at all but returns directly to its

equilibrium position.
We can make the following conclusion:

X

Figure 1-9

a) if b2> 4 mk , the damping is so large and the system takes a long time to reach
equilibrium — the system is overdamped (curve C);

b) if b2 < 4 mk , the system makes several swings before coming to rest (curve A);
c) if b%= mk , the equilibrium is reached in the shortest time — this case is called
the critical damping (curve B).
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1.7 Forced Oscillations - Resonance

Let us suppose that an object may oscillate at the frequency f of the external force acting
on it, even if this frequency is different from the natural frequency of the undamped object.
In this case we talk about forced oscillations. To distinguish the frequency f of the
external force from the natural frequency of the system, we denote the latter by fy and the
natural angular frequency by @y .

We shall discuss the important case when an external force can be represented by

F,,=Fycoswt ,

where @ =2z f is the angular frequency and F) is the amplitude of the applied external
force.

Thus, the equation of motion (assuming damping) is
ma=—-kx-bv+Fycoswt
d*x dx
or m—-+b—+kx=F,coswt . 1-30

The solution of this differential equation is

x(0)=Agsin(wt+¢,) , (1-31)
where Ay = F(z’ (1-32)
m\/(wz—a)(?j) +b%0” I m?
B2
and (oO:arctng @
wb/m

The amplitude of the forced harmonic motion, 4y , depends strongly on the difference
between the frequency of the applied external force @ and the natural frequency wo.

m, 20, 0
Figure 1-10

The dependence of 4, (Eq.1-32) on the frequency @ of the applied external force is shown
in Fig.1-10 for three specific values of the damping constant 5.
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Curve A (b:éma)g) represents light damping, curve B ( b:%mwo) fairly heavy

damping and curve C (b = 2 ma ) overdamped motion.

The amplitude can become very large when the frequency @ of the external force is near
the natural frequency, @ ~ w, as long as the damping is not too large (curve A). This is
known as resonance and the natural frequency @, of a system is called its resonant
frequency. Exactly the resonant frequency is defined as the value of @ at which
the amplitude has its maximum value and this depends somewhat on the damping constant.
But except for very heavy damping this value is quite close to @ .

If 5=0, resonance occurs at @ = @, and the resonant peak of Ay becomes infinity.

For real system, b is never zero and the resonant peak is finite and it does not occur
precisely at =, (because of the term b°w? /m* in the denominator of Eq.1-32) but it

is quite close to @ unless the damping is very large. If the damping is large, there is little

or no peak (curve C).
The oscillating system is often specified by its quality factor or Q-value, defined

ma

g=—" .

For our examples in Fig.1-10, curve A has Q=6, curve B has Q=2 and curve C has
Q=1/+2.
Thus, we can see that the smaller the damping constant b the larger Q value becomes and
the higher the resonance peak.
The Q value also determines the narrowness of the resonance peak. The larger Q value
the more narrow will be the resonance peak. So, a large Q value, representing a system of
high quality, has a high narrow resonance peak.

1.8 Combination of Harmonic Motions

In this chapter we shall examine the combination of two harmonic motions of the same
directions. We will assume that both simple harmonic motions have the same frequencies

o, = w, = @, different amplitudes 4; # 4, and different phases ¢ # @, . Thus, the first
motion is described by the displacement function
x, (1) = 4 cos(wt+¢y)

and the second one by X, (£) = 4, cos(wt +¢,) .
To find the resultant motion we use the principle of superposition which tells us that
the displacement of the resultant motion is equal to the sum of displacements of both
partial motions.
Thus, we can write (after easy computing)

x(#) = x, () +x, (£) = (4 cos @ + A cos @, )cos i — (4 sin g, + 4, sin g, )sin ot .
The terms in parentheses are constants. We see that the resultant motion is also harmonic
with the same frequency @ but different amplitudes and phase angle. To find these
unknown quantities we express the displacement function of the resultant motion in
standard form:

x(2) = Acos(wt + @) = Acos pcos ot — Asingsinwt ,
20




where A and ¢ represent the amplitude and the phase of the resultant motion, to be
determined.
As the last equations must be identically equal at every instant of time, the coefficients at
cosw? and sin @t must be the same.
Hence:
Acos@ =4 cose + 4, cosp, ,
Asing = 4 sing, + A, sing, .
Dividing of these equations gives us the phase angle of the resultant harmonic motion
_ Ajsing + 4) sin @y
- Ajcosg+Aycospy
To find the amplitude of the resultant motion we square these equations and then we add
them. We have result:

f

A% = A2 4244, cos(py — )+ 43 (1-33)
We have obtained the important formula for the determination of the amplitude of
the resultant harmonic motion. Let us have a look on this expression in detail:

1) If @, - =2kn, where k=0, 1, 2, ...then cos(¢,—¢;)=1 and the amplitude of
the resultant oscillating motion will reach its maximum

Apax =4 +4y . (1-34)

2) If ¢, —¢ =(2k+1)7, where k=0, 1,2, ...then cos(¢@, —¢ )=-1 and the amplitude of
the resultant oscillating motion will reach its minimum

A4, if A>A
Amin = (o4, i ety (3-53)

Consider now a particle which undergoes simple harmonic motion along two perpendicular
directions, say the x and y axes, and let frequency @ in both directions be equal:

x=A, cos(wt+¢,) ,
y=4, cos(a)t+ (py) :
Examine the resultant motion for the following cases:
1) equal phases, ¢, =@, =9 ;
2) phase difference ¢, —¢, =+7/2 and the amplitudes are equal 4, =4, =4,
3) phase difference ¢, — ¢, =+7/2 and the amplitudes are different 4, # 4, .

Solution:
1) Equal phases, ¢, =@, =¢:

_ A .
Since x=A,cos(wt+¢) and y=A,cos(wt+¢) =A—yx which is the equation of
X

a straight line of slope (4, / 4,), the resultant motion will be a straight line in the xy plane.

In Fig.1-11 there is shown this motion when 4, =24, .
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Figure 1-11

2) op-@,=%m/2, A.=4,=4:
x = Acos(wt +9),

and y:Acos(a)Hq)——;z):Asin(a)H(o)

So, we can write x>+ y2 = A* ,
which is the equation of a circle in the xy plane of radius A (Fig.1-12).

Y
A

%
N

Figure 1-12

3) ¢o,—,=tx/2, A, # A,
x=A,cos(wt+9¢) ,

y=4, cos(wt+¢—%):Aysin(a)t+¢),

x
0 = 1+9) ,
r y cos(wt +¢)

X
Y —sin(wt+9)
4,
_xf_+_}i.2. =1
2 2.
42 A

which is the equation of the ellipse with major and minor axes equal to 24, and 24, .

and thus
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InFig1-13 A, =24,

A

T\
-

Figure 1-13

Note: when the frequencies are not equal (@, # @, ) the resultant motion can be very

complex. Generally the curve is not closed and thus is not periodic. However, if the ratio
o,/ @, is equal to the ratio of two integers the curve is closed and the motion is periodic

one. These types of curves are called Lissajous figures. The example for
@, =2w,, @, — @, =7/4, 4,=4, 1is shown in Fig.1-14.
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