1.6 ROTATIONAL DYNAMICS

Firstly, we define the moment of a force. If a
force F acts on a simple particle at a point
-~ whose position with respect to the origin 0 of
o the inertial reference frame i1s given by the
e position vector r, the torque T acting on the
i particle with respect to the origin 0 is
defined as the vector product

0= / 1=rxF

q ~~G ' Torque is a vector quantity and its magnitude
1s given by

m

t=rF sinat

where o is the angle between r and F; its direction is normal to the plane formed by r
and F. Its orientation is given by the right-hand rule for the vector product of two
vectors. Torque has the dimensions kg m” s> and the unit of torque is the newton-
meter (N.m).
Note that the torque depends not only on the magnitude and on the direction of the
force but also on the point of application of the force relative to the origin 0, that is, on
vector r.
We can also write the magnitude of vector 1 either as

r=(rsina)F =Fr,
or as

r=r(Fsin q) =rF,
in which 7, is the component of r at right angles to the line of action of F, and F, is
the component of F at right angles to r.
Torque is often called the moment of force and 7, is called the moment arm.
We see that only the component of F perpendicular to r contributes to the torque. In
particular, when o equals 0° or 180°, there is no perpendicular component; then the
line of action of the force passes through the origin and th‘ve;mo‘"ment arm 7. about the
origin is also zero and the torque T is zero.

The analog of linear momentum in rotation motion is an angular momentum. Consider
a particle of mass m and linear momentum p at a position r relative to the origin 0 of
an inertial reference frame. We define the angular momentum L of the particle with
respect to the origin 0 as
L=rxp

Note that we must specify the origin 0 in order to define the position vector r in the
definition of angular momentum.
Angular momentum is a vector. Its magnitude is given by

L=rpsing
where ¢ is the angle between r and p; its direction is normal to the plane formed by r
and p and its orientation is given by the right-hand rule.
Angular momentum has the dimensions kg m’ s




We now derive an important relation between torque and angular momentum. We
have seen that F = d(mv)/dt = dp/dt for a particle. We take the vector product of r
with both sides of this equation:

rxF=rx d_p
dt
But r x F is the torque about 0. We can then write
T=0rX i ( 1)
dt
Next we differenniate the Eq. for L
S en)
T
or
dr
= —— XPHIrX——
dt dt dt

We rewrite the right side of this equation

dp

o (vxmv)+r—

dt dt

Now v x mv = 0, because the vector product of two parallel vectors 1s zero.
Therefore,
dL dp
—— =X —
dt dt
Inspection of Egs.(1) and (2) shows that

(2)

e (3)
which states that the time rate of change of the angular momentum of a particle is
equal to the torque acting on it.
This result is the rotational analog of the equation F = dp/dt which states that the

time rate of change of the linear momentum of a particle is equal to the force acting on
it.

Any moving body may be considered as a system of individual particles, each with

0 17 s : :
kinetic energy —mv". The kinetic energy of the body itself is equal to the sum of the

et

kinetic energies of its particles
1 N
KE = :—(m,vf +myi+..)
2
Tf the motion is pure translation, so that all particles have the same linear speed v, this

: 1
equation reduces to KE = — AM? where M is the total mass of the hody.

LANS A & e LY .y Civ ive & i ALK

if the motion is pure rotation, the linear speeds v, of the particles differ according to
the distances R of the particle from the axis of rotation. However, the angular speeds
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o are the same, provided the body is rigid, and since v, = R @ for pure rotation, we
can express the kinetic energy of a rotating body as

KE = #aniﬂzwz

IJ[»—-A

The quantity . i
[=%mR [I]=kg.nm

1s called the moment of inertia of the body about the axis of rotation.

The equation for the kinetic energy of a rotating rigid body then reduces to the
form

1
KE =—]&’
2
Note the similarity of this expression to that for kinetic energy of translation,

KE = %Mvz; the quantity 1 corresponds to mass M and the angular speed ®

corresponds to linear speed v.

It is evident from the definition that I may be found by imagining the rotating body
divided into minute particles, multiplying the mass of each particle by the square of its
distance from the axis, and then adding these products. It is important to note that R
does not refer to the position vector of m ; it is the perpendicular distance from m, to
the axis of rotation. Hence I depends on the position as well as the direction of the
axis.

Just as the inertia or mass of a body is a measure of the resistance it offers to linear
acceleration, the moment of inertia I 15 a measure of its resistance to angular
acceleration. However, it is evident that I is not proportional to mass alone; the
moment of inertia is a function both of the total mass and of the distribution of mass -
that is, of the distance of the mass elements dm from the axis of rotation. Therefore, in
the case of continuous bodies, it is generally necessary to calculate I with the aid of
integral calculus. For this reason, the summation for I becomes an integral as the
masses m, become infinitesimal mass elements dm.

So, in the case of a continuous body, the moment of inertia is calculated as

I= Tdem = [Rpav

where A is the total mass of the body, R is the perpendicular distance of dm from the
axis of rotation, and p is the density of the body, which may be a function of position.

For purely rotational motion of a particle m at a distance R from a fixed axis of
rotation, the angular momentum component along that axis is
L,=Lsin®=mvrsin®
However, rsin® =R and v=R o, so that
L =mR*w
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For a rigid body, then, in which all particles m,
rotate with the same angular velocity © about an
axis of rotation that is fixed with respect to the
body, the angular momentum of the body along
the axis of rotation 1s

' L=Y mRo=Io
yaxs  Where the moment of inertia I is computed with
respect to the axis of rotation.
/ Eq.(3) now yields
X axis d( Iw)
7=
dt
In the case of constant I, the torque can also be expressed as
do
r=]—=1I¢
dt

This is the rotational analog of F = m a. It represents the second law of motion for
rotation.

When there is no torque, angular momentum L must be constant over time

%1—;1 =0 andthen L = Iw=constant

This is the law of conservation of angular momentum for a rotating body: for a
rigid body, the angular momentum as well as the angular velocity remains
constant if the sum of the externally applied torques is zero.

Let us now calculate the work done on a body
rotating about a fixed axis. We suppose that a force
F acts at a point at a perpendicular distance R from
the axis of rotation.

The work done by this force is

W=[Fd= | F.Rdp
But F_R is the torque about the axis, so
W=[rdp

The work-energy theorem must also hold for the
rotation of a rigid body about a fixed axis.
As we can write
7= Ie':Iia—)—: I—@'@:Ia)g—a—)
dt do dt do
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L s B
W= [ rdp= [lodo= %m; —%lez
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The work-energy theorem for a body rotating about a fixed axis states that the work
done in a rotating body through an angle ¢, - ¢, is equal to the change in rotational

kinetic energy of the body.

Power P is given by
aw  de
P=— ="tz
dt dt

Note that this is the rotational analog of P=F.v

The parallel-axis theorem states that if I is the moment of inertia of a body of total
mass M about any axis, and /,, is the moment of inertia about an axis passing through

the center of mass and parallel to the first axis at distance h away, then

=1, +Mn’

The equilibrium condition for uniform translation motion of the center of mass is

=0

and the equilibrium condition for steady rotation about some axis is

2 n=25xF=0

where r, specifies the point of application of 'F, relative to a selected origin.

Combined translations and rotations: If a body is not mounted on a fixed axis, but
is free to move in space, the applied forces will generally produce translational motion
of the center of mass, as well as rotational motion about some axis through the center
of mass. St

In this case, the total kinetic energy of a moving body is the sum of its kinetic energy
of rotation about the center of mass and its kinetic energy of translation associated
with the motion of the center of mass

KE-I

1
2 2
—;)—Iwa) +—7—Mvah,
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Problem 1-100. The force F = 3i +7j +4k (SI units) acts at the point A = [5;7;6].
State the magnitude and the direction of the torque vector considered with respect to

the point 0’ =[3;-5;2]

Solution: The position vector of the
y point of application A with respect to
f the reference point 0’ equals
r=r,-r, =2i+12j+4k

thus, the torque with respect to pomt

0" equals
g b3
7 M =r x F = 20i + 4j - 22k
z s and the magnitude of M equals
O'I

M= +/400+16+484 =30 N.m

The direction of M is given in terms of its directional cosines. These are given by the
components of the unit vector in the direction of M.

I 2 2 1
v - :~i+—-j~1—k
A3 =457 5
and thus
Z 2 11
cosa=—: cosfl=-— cosv=-——
3 15 15

Problem 1-101. A lamp of mass m is suspended on two wires. The first wire makes an
angle o with the horizontal plane and the other one makes an angle B with the same
plane.

Calculate the tension in the wires.

Solution:
y
E:
2 g
" G=-mgj
B o F, = F(icosa+ jsin a
m — X . s F % e = 3
F, = F,{—icosf+ jsin f)
-
G 1. . o
Y From the equilibrium condition

F+F+G=0
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we have two equations for the tension forces in the wires

and from here

F cosa—F,cosff=0
F,sin g+ F, sin f=mg

Fem cosff = cosa

gsin(a—l—ﬂ)’ e sin(a+ f)

Problem 1-102. A body of mass m is suspended as shown in Figs. Calculate the
tension in the ropes for each configuration.

\

AN

%

g&zzazzoag&o

2 G
@) &)
Solution:
y y
7 2
(3:8)
LB A 2 N i/
?1 —_— X s K
F1
4 I
| \
a) $)
a) G =-jmg
Fl % "iFl

F,=iF,cosa+jF,sna

From the equilibrium condition

F,+F,+G=0
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we get two equations for the forces 7], #5535t 1

—Fy+ F,cosa=+Q"

F,sma-mg=0
and from here

F-T8. g _™g

1ga’ sin &

b) G =-jmg

F, =-iF, cos(f;—cw,ﬁ)—j}?1 Sin(—;f—ﬂ)

N

F,=iF,cosa+jF,sina

From the equilibrium condition

F,+F,+G=0
we get two equations for the forces £,

—Fisin B+ F, cosa=0

—F cosf+ F, sin a =mg

and from here
cosa

cos(a+f)

Fo=-mg—"2—  F =_mg

sin 7
“ cos(a+f3)

Problem 1-103. A uniform m,-kg beam supports an m,-kg body as shown in Fig.

Calculate the force on each of the supports.

|

F

ar2 a/4 a4
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Solution: The weight of the beam
acts at its center. The force the
beam exerts on the supports is
equal and opposite to the forces
exerted by the supports on the
beam.

Since it does not matter which
point we choose as the axis for the
torque equation, we calculate the
torques about the point of
application of F,, for example.
We can now write the equilibrium
conditions for the beam




F-mg-mg+F,=0
a 3
-mg -mga+Fa=0

and from here

mm
B 1,732
1 g(Z 4)
, m 3
F=gl™yim
2 g(z fi 2)

Problem 1-104. Calculate the minimum angle with respect to the horizontal for which
the ladder does not fall due to its weight.
(see Fig). The coefficient of friction between
the wall and the ladder is x, and between the

4 Fy ground and the ladder 1s u,.

—_— <

Solution: The forces acting on the ladder are

shown in Fig. G is the weight of the ladder

itself, a force F, is exerted by the wall on the

ladder, a force F, is exerted by the ground

6 F2 on the ladder, the forces w,F, and u,F, are

Al forces of friction.

! By the third law of motion the forces exerted

# 22 2 ZZZ f2 F2 s by the ground and the wall on the ladder are

- equal but opposite to the forces exerted by

the ladder on the ground and the wall,
respectively.

AAARARARARRANARRNNRRY

SO

We choose the x-axis to be along the ground and the y-axis along the wall.
Then, for translation equilibrium the forces follows the equations.

ZFx:E'ﬂze:O
ZF;:F2+/‘1F1"G:O

For rotational equilibrium we choose an axis through the point of contact A with the
ground and we obtain

Gécosa—ylFchosa~F,Lsin g=10

By solving these equations we get
1 1 : :
) M +— jcosa—u,cosa--sina=0

2
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and from here we obtain the result

The angle depends on the coefficients of friction only.

Problem 1-10S. Calculate the moment of inertia of a uniform hollow cylinder of inner
radius R,, outer radius R, and mass M, if the

P oW e, rotation axis is along the axis of symmetry.

R
99 I Solution: We divide the cylinder into concentric
: h

cylindrical rings of thickness dR. The mass of
such a ring equals dm = p dV, where p is
density and dV =2nR.dR h is its volume.
Thus, the mass of such a ring equals

dm =27np hR.dR.

Its moment of inertia is now

R, .
zzjkumzzmﬁjRuR:%mMUﬁ—Rﬂ
M -

Ry

The volume of the hollow cylinder is
V= R: - R )h
and its mass
: M=pV =pad R: - R )h
Thus

Note that for a solid cylinder R, =0 and if we put R, = R,, we have a formula for the
moment of mertia of a solid cylinder whose radius is R,

leymg
2

where M is the total mass of the solid cylinder.
Problem 1-106. Calculate the moment of inertia of a uniform solid sphere of radius 7,
and the total mass M about an axis through its center.

Solution: We divide the sphere into infinitesimal cylinders of thickness dy. Each

cylinder has a radius

i ,2

)
RZ\;”T@ ¥



and its mass equals
dm=pdV = prRdy = palr? — y* )dy

Thus, the moment of inertia of each infinitesimal
cylinder s

dl = %dmR i —gg(r; — 22yt +y* )y

Integrating over all these infinitesimal cvhinders
gives us the moment of inertia of the sphere

%

2 % I(r&“— 212y +y* )y = ]—85 pnf

-

Since the volume of the sphere is
4
V= 5‘ T,
and its mass

M=pV = g- 7pr,

the moment of inertia of the sphere equals

I= %Mro2

Problem 1-107. Calculate the moment of inertia of a uniform cone if the rotation axis
is along the axis of symmetry. ( R - the radius of the cone, M - its mass)

4 Solution: At the distance y from the top we
1 R choose an infinitesimal cylinder whose

Y radius is r = % y and whose mass equals

dM = mr*pdy.
The moment of inertia of such a cylinder
h s equals
1 1 R
dl =—r’dM = — n—py*
y 5 ' : ”h“ py dy

1 \ The moment of inertia of the cone is now
s calculated as the integral
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B s
szdlz

¥=0

3

10

where M = % wR’hp is the mass of the cone.

MR?

Problem 1-108. Find the moment of inertia of a uniform stick about an axis

; : .
perpendicular to a stick through one end.

|

[ X dx

.

l Y,

! Z

[0 :——-—l—x
= g -

Solution: Since the total mass M is
uniformly distributed along the length,
the mass element dm has the moment
of mertia

dl = x*dm = x* pSdx

and the moment of inertia of the stick
1s now calculated as

d
b= jd]:lMdz
x=0 3

Problem 1-109. Find the moment of inertia of a uniform stick about an axis
perpendicular to a stick through the center of mass.

Solution: Since the axis is through
the center of mass of the stick, the
mntegration extends from -d/2 to
+d/2. Thus

d'2 l
= de:—Mdz
12

x=—d/2

This is smaller than that about the
axis through the end, as would be
expected, because, on an average, the
mass 1s closer to this axis than to the
end.

This result can also be obtained from the result of Problem 1-108 and the parallel-axis

theorem. In this case s = %d , and

74 :
I=1I,, +M(—}d) = '3—111/1617z

74




Loy =~ Md* -~ Md* =~ Ma?®
3 RS ETU R

Problem 1-110. Find the moment of inertia of a hoop of mass M and radius R about
a) an axis through the center and perpendicular to the plane of the
hoop
b) an axis through point A and perpendicular to the plane of the
hoop A
c) the diameter of the hoop
d) an axis o’ that is a tangent to the hoop

Solution:

: 2z
a) I, = j R’dm = pR® j SRdp=MR>
M =0
(we use S for the cross-section area)
b) We may apply the parallel-axis theorem
I, =1,+MR* =2 MR
27 ' 1
e I = Iyzdin = fpSR3 sin’ pdg = EMR2
M e=0 :

d) We may again apply the parallel-axis theorem

. 3 .
I, =1+ MR =~ MR




Problem 1-111. A 15 N force F, is applied to a cord wrapped around a wheel of
radius R = 33 cm. The wheel is observed to accelerate uniformly from rest to reach an
angular speed of 30s™' in a time of 3 s. If there is a frictional torque 7, =11N.m,

determine the moment of mertia of the wheel.

33cm Solution: The net torque is the applied torque due to

F, minus the frictional torque

t=F.R-7,

The angular acceleration is

Aw
£=—o
At

and thus

T

I =—=0385kg.m’
&

Problem 1-112. Calculate the angular acceleration of the wheel and the linear
acceleration of mass m in Fig. Determine also the angular velocity of the wheel and the
linear velocity of the mass at time t if the wheel starts from rest at t = 0. Assume the
frictional torque to be 7, and the moment of inertia of the wheel to be I.

radius of
wheel R,

3

mg

Solution: For the rotation of the wheel, we may
write the equation
T=15
where
r=IR~1,

thus, the angular acceleration of the wheel
equals

y Toki=t;
) J

Next we look at the linear motion of the mass

m. Two forces act on the mass: the force of

gravity mg acts downward and the tension of

the cord F, upward.

Thus, we may write the equation

o~
&

ma=mg- F,

If we use the relation a = R, ¢, we get from last two equations

"3 mgR, — 7,
e
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As all quantities on the right-hand side are constants, the angular acceleration of the
wheel rotation is constant.

Thus, we can now express the linear acceleration and the linear velocity of the mass as
well as the angular velocity of the wheel:

a=Ry¢
w=w,+&El=¢l, (a)onat 1=0)
v=Ro=R,st

Problem 1-113. A uniform rod of length L can pivot freely about a hinge as shown in
Fig. The rod is released from the horizontal position. At the moment of release,
determine the angular acceleration of the rod. Assume the force of gravity acts at the
center of mass of the rod.

> Solution: The only torque on the rod is

cm
&“ falal r= Mg

; !lMg ,’,'I The moment of inertia of a uniform rod pivoted
b2 o about its end equals
I= lML2
3
Thus
Fra il |
7

Note this is the angular acceleration at the moment of release. As the rod descends, the
torque cannot be constant and thus the rod's angular acceleration also cannot be
constant.

Problem 1-114. A rod of length L is pivoted on a frictionless hinge at one of its ends
as shown in Fig. The rod is held at rest horizontally and then released. Determine the
angular velocity of the rod when it reaches the vertical position, and the speed of the
rod’s tip at this moment.

L Solution: We can use the work-energy
theorem here; the work done is due to gravity.
The work done by gravity is, of course, equal
to the change in gravitational potential energy
of the rod. Since the center of mass of the rod
drops a vertical distance L/2, the work done by
gravity equals

-y o CM

L2

cm

L
W= Mg =
2
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The initial KE is zero. Hence, from the work-energy theorem we write

1 L
—Iw’ = Mg—
P g2

Since /= %ML2 for a rod pivoted about its end, we can solve for ©

o [
L
The tip of the rod will have the linear speed

v=Lo=+3gL

Problem 1-115. Calculate the acceleration of the bodies m,)m, suspended on a
pulley whose radius is R and whose moment of inertia 1s L.

A IIN I, Solution: For the motion of the bodies and the
pulley we can write the following equations:
\ mg - F, =ma
e I, —m,g =ma

} a

. (}’ 1 Fz)R = “R“ !

F2 ";!1 These are three equations for three unknown
quantities a, F;, F;.

Fa A The solution for the acceleration gives the
| Fy result
m, —m
m a=g—1—2
m; +m, + e
m1
-
G2
J
61

Problem 1-116. A uniform cylinder of mass m, and radius r rotates about its axis
orientated horizontally. Its motion is caused by a suspended body whose mass is 2,

Find the dependence of the angle displacement on the time and calculate the linear
acceleration of the motion of the body m,.

Solution: The rotational motion of the cylinder is described by the equation




d*e

dt’ (1

Fr=1

My

The motion of body ,. 1s described by the equation

4 G-F=ma or mg-F=ma (2)
If we substitute for F from (2) to (1) and we use
F 1 g 4o
', [=—mr- and a=re=r—-
2 dr’*
we obtain the differential equation
mz "
, dp  2mg
l_’ dr*  (m +2m,)r
G
: Integrating gives us (provided o =0 and ¢ =0 at time t
=0) il
¢(l‘) = e Y PN
(m, +2m, )r

Finally, body m, makes a uniformly accelerated motion with an acceleration

Problem 1-117. Consider a sphere rolling down an inclined plane without slipping as
in Fig. Let m and R be the mass and the radius of the sphere, respectively.
Calculate the acceleration of the motion of its center.

Solution: When the sphere rolls without
slipping, the point of contact moves the
distance s = R.a, which is the distance
i W moved by the sphere’s center.
y The ‘motion can be considered as the
,& rotation of the sphere about the
}ke , instantaneous axis through the point of
X
]

P contact. Such a motion will be described by
the equation
3 do
y G
_ ; r=]—
2 dt

wheret=m gx=m g Rsina and Iis the
moment of inertia of the sphere related to
this instantaneous axis that can be calculated
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according to the parallel-axis theorem
T e
I=1,,+mR" = ng‘

Thus, we get the equation

mgR sin o= LR i
5 dt
and from here
do 5g .
—="2sna
R B 4

and thus

.25y
a=R—=—pgsina
a7

Problem 1-118. A bar of mass m and length L can rotate about an axis through its
center perpendicular to the bar. A projectile of mass m, strikes the bar's end with
velocity v, perpendicular to both the bar and the axis.

Calculate the initial angular velocity of the bar at the moment of striking (the projectile
1s assumed to be stuck).

Solution: The angular momentum of the
projectile with respect to axis 0 equals

L
Ll :mlvt'?"

The angular momentum of the bar equals
0 L, = J'xla)dm:a)]
(m)

N |-

where I is the moment of inertia of the bar
relative to axis 0.

dm Y2777

i ¢ The law of conservation of angular momentum
Vi gives us the equation
X

v £*m[+mv£
b V5

where v is the initial velocity of the system after
striking.
We substitute

v:£a) and IzimL2
2 12

s 1 e

and we obtain

e 5
my, 7)— % l—omL“'a)erla)E—
and from here
6m,v,

mL +3m, L
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Problem 1-119. A uniform cylinder starts to roll without slipping from point A of an
inclined plane. Calculate the velocity of the cylinder at point B and the time required to

travel the path s= AB (see Fig.)

Solution: We write the law of conservation of mechanical energy

st 0 Ve
mgs(sin &) = Emv2 +%Ia)2

If we cubstitite ] = —myp 2

,,,,,,,,,, -
we get for the velocity at point B

v

md m—
and o

gs(sin )
3

Y =i

The time required o travel path s can be
calculated from the definition of velocity

ds ds 1 3 ds
e — —
dt y 2\gsina+s
and after integrating we obtain
3s
f= ,
V gsina

provided v=0 at t=0.

Problem 1-120. A uniform bar of length L bears upon two perfectly smooth walls (see -
Fig.). The motion of the bar begins
from its vertical position. Calculate

¥ : the velocity of its top end A when it
T falls on the horizontal plane fY
A
N Solution: For q):g the potential
. (0, % ) energy of the Ear is )
Yo »PEzmg—i- andits KE =0

The motion of the bar s a
combination of the translational
motion of its center of mass and the
Xo — o x  rotational motion about the axis
through the center of mass.

VL LLLLALE L

For any angle @#0 the potential

energy equals
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PE= mgé'—sm 7]

and the kinetic energy equals the sum of the KE of the translational motion and the KE
of the rotational motion
Kf= ~1—mv§ + 11
2 2

where v, 1s the velocity of the translational motion of the center of mass and @ is the
angular velocity of the rotational motion about an axis through the center of mass. The

The location of the center of mass can be described by angle ¢:
4 .
¥y = —COS P, =-—sin
0T P, W 5 @

and the components of the velocity vector of the center of mass equal

_id_x_(’._—_—_[i@sin¢’ %:Ld¢
dt 2 dt a2 dt

L (deY
® a4l gr

and the kinetic energy of the bar equals

8 dr

cos @

Then

+ —!—mL2 w* = lmL2 "
24 6

From the law of conservation of energy we can write
mg£ = mg—[isin ¢+lm]fa12
4 2 6
and from here
=]
y #

The angular velocity @ at the moment when end point A drops to the ground is
calculated for ¢ =0, so
oo 38

alk

o= 1-sin @)

The instantaneous velocity of end point A equals the sum of the y, component of the

velocity of the translational motion of the center of mass and the angular velocity of
the rotational motion of the end point A about the axis through the center of mass

iL L
v, :Ewcos¢+?a)

P

The velocity of end point A when it drops to the ground equals (¢ = 0)
=Lw=y3gL




Problem 1-121. There is a squared pyramid on an inclined
plane, as shown in Fig. Its height is / and the edge of its
base has a magnitude of a.

Calculate the angle for which the pyramid will start to
overturn about the edge of its base.

I-a 2 arctgz—a-l
L h ]

Problem 1-122. Calculate the moment of inertia of a flywheel whose mass is M and
whose inner radius is R, and the outer radius equals R, .

[I:%M(Rf +R22)]

st

Problem 1-123. Calculate the moment of inertia of
a uniform half circular plate of mass m and radius R about an
axis perpendicular to the plate through its center.

Problem 1-124. Calculate the work needed to increase the number of revolutions of a
flywheel from the numerical value 7, =333 min" 0 1, =360 min "', if the moment of

inertia of the flywheel 7 =12 x 10’ kg m’.

W=13x10°J
[ =13x10:J]

Problem 1-125. A resting circular disk of mass m and diameter d is to make one
revolution in time 7 .
State the force that has to act at its circumference in a tangential direction .

amd
et

Problem 1-126. What torque is needed for a resting cylindrical flywheel of mass m
and radius 7 to reach in time 7 the angular velocity expressed by # revolutions per

minute? :
[ mr’n
’z,' =
L 601

83



Problem 1-127. A resting flywheel of [ =540kg m’ starts to rotate. The torque
acting on it increases linearly with time so that it reaches the value 7, =100N.m at
time #, = 10s.

State the frequency of the flywheel at time 7, = 72s.

Problem 1-128. Consider a solid disk rolling without slipping down an inclined plane
of angle a. Calculate the linear acceleration of its center.
2
[a & gsin a}

Problem 129. A sphere is rolling without slipping
down an inclined plane. Calculate the velocity of its
center at the place which is lower of 4 than the

initial position.
[10
Y=VT gh

Problem 1-130. A disk of mass m and diameter d rotates with frequency 7. Due to
braking it will be stopped in time 7 . Calculate the needed braking torque

Problem 1-131. A body of mass m, is tied to a light string wound around 2 uniform
wheel of mass m,. The body starts to fall from an unknown height 4, above the
ground.

Calculate the height %, if the body drops to the ground with velocity v.

5 v:(m, +2m,)
' am,g

J

Problem 1-132. Consider a solid cylinder of mass M and radius R rolling down an
inclined plane without slipping. Find the speed of its center of mass when the cylinder
reaches the bottom if 7 s the height of the incline.

-

s
'L"“:v%gh

o
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