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1. OSCILLATIONS

1.1 The Simple Harmonic Oscillator

When we speak of a vibration or an oscillation, we mean the motion of an object
that repeats itself, back and forth, over the same path. Such a motion 1s periodic.
The simplest form of periodic motton can be
represented by an object oscillating on the
end of a spring. The mass of the spring is
m assumed to be ignored. We assume that the
spring is mounted horizontally (as shown in
Fig), so that the object of mass m shdes
without friction on the horizontal surface.
Any spring has a natural length at which 1t
A m ~ exerts no force on the mass m, and this is
‘ called the equilibrium position. If the mass
x=0, x| (x>0) X is moved either to the left, which compresses
the spring, or to the right, which stretches 1t,
the spring exerts a force on the mass which
acts in the direction of returning it to the
equilibrium position; it 1s called a restoring
force The magnitude of the restoring force
F is directly proportional to the distance x the
~ spring has been stretched or compressed (see
Fig.):

; x=0 X

(x<0) x: 1 x=0 X

=-kx .
This equation is accurate as long as the spring 1s not stretched or compressed beyond the
elastic region The minus sign indicates that the restoring force 1s always in the direction
opposite to the displacement x. The proportionality constant k 1s called the force
constant. The greater the value of k, the greater the force needed to stretch or to
compress a spring a given distance. That is, the stiffer the spring, the greater the force
constant k.
We shall define a few terms. The distance x of the mass from the equilibrium point at any
moment 1s called the displacement. The maximum displacement - the greatest distance
from the equilibrium - is called the amplitude. One cycle refers to the complete motion
from some initial point back to that same point (say from x=A to x= -A back to x=A).
The period, T, is defined as the time required for one complete cycle. The frequency, f,

2

1s the number of complete cycles per second. Frequency 1s usually specified in hertz (Hz)
where 1 Hz = 1 cycle per second. It 1s evident that

f:i and T:i
r /

Problem 1-1. A spring stretches 0.150 m when 0.300-kg mass 1s hung from it. The
spring is then stretched an additional 0.100 m from this equilibrium point and released.
Determine: a) the value of the force constant




vy

b) the amplitude of its oscillation

Solution: a) Since the spring stretches 0.150 m when 0.300 kg 1s hung from it, we may
find the force constant k from the equation for a restoring force:

g=2 -8 155 igm
X X

b) Since the spring is stretched 0.100 m from equilibrium and 1s given no nitial speed,
the amplrtude of 1ts oscillation has to be A= 0100 m.

1.2 Simple Harmonic Motion

Any wvibrating system for which the restoring force 1s directly proportional to the
negative of the displacement 1s said to exhibit simple harmonic motion. Such a system
is often called a simple harmonic oscillator.

From Newton's second law we may state the equation of motion for the simple

harmonic oscillator:
d'x k
—~+—x=0,
dit® m
where m 1s the mass which 1s oscillating. The general solution of the equation of motion
equals ‘

x=a cosot+b sinot
where a and b are arbitrary constants determined by the initial conditions. The constant
o 1s called the angular frequency and 1t equals

k
@= . —
m

This general solution can be written in equivalent and more convenient form:
x = Acos(wt + @) .
The physical interpretation of this
XV solution is simpler. As shown in
Fig.,, A 1s simply the amplitude

A -
/x(t)~A oo (b 9) (which occurs when the cosine
A . .
has its maximum value of 1); and
0, called the phase angle, says

At =- —g \t how long after or before t=0 the
’ peak at x=A 1s reached. For ¢=0,
ATt we have x=A cosot and for
0= -7t/2 we have x = A sin ot.
Since the oscillating mass repeats its motion after a time equal to its period T, it must be
at the same position and moving in the same direction at t=T as it was at t=0 And since
a cosine function repeats itself afier every 27 radians, then we have
oT=2n .

Hence

a):g—;tZzzf,

v




where f'is the frequency of the motion. Thus the solution can be written as

{79
x=Acos —1t+¢@
we may T
or ;
x = Acos2nft+ o),
where
| speed, 1 [k

Note that the frequency and period do not depend on the amplitude.

| to the The velocity and acceleration of the oscillating mass can be obtained by
| system differentiation of the function x(t):
- v:%:—a)Asin(a)t+¢)
2
= Z; = %V ~w" Acos(wt + @)
i ; . ; . , : The  displacement,
| i ; ! ‘ velocity and
‘ : : : ’ : acceleration as a
function of time for
onstant the case when ©=0
are plotted in Fig.
The speed reaches its
maximum
Vowe = O A= \/E A
‘ m
1 of this when the oscillating
v 10 object 1S  passing
aplitude through its
EosIC : ] , , ‘ : equilibrium  pomt,
1), and g : =0; and it is zero at
le, says e ' ’ ' ' ' ! points of maximum
=0 the displacement,
or =0, x=+4.
d for a . The acceleration has
n ot. 1ts maximum
must be k
d since oA Uy = 0 A = };A’

where x = + A4, and 1s zero at x=0.




NPT ——

Problem 1-2. A vertical spring stretches y, = 0.3m when m=0 6 kg mass 1s hung from
it. The spring is then stretched an additional y, =0 2m from its equilibrum pomnt and
released with no mitial speed.
Determine: a) the value of the force constant k

b) the anguiar frequency of the oscillation

¢) the maximum velocity

d) the maximum acceleration

e) the period and frequency

Solution:  a) k*ﬁ ﬁg’L—196N/m

\/7 =572~
yc '
¢) v, =wd= \[' y1_114m/5

d) a -a)A—k y1_653m/s
m

e) T= 27[\/' =25 ~lls f*l~~4 =-=091Hz
T 2z\y,

Problem 1-3. For the simple harmonic motion given in the previous problem determine:

a) the displacement y as a function of time

b) the velocity of the motion as a function of time and then calculate the velocity at time
t=0335

¢) the acceleration of the motion as a function of time

Solution: a) The motion begins at a point of maximum displacement downward. If we
take y positive upward, then x=-A at t=0 and so ¢=7 .
Henes

y(t)=—Acoswt=-y, cos\/é t

0
Putting in numbers yields y(t) =- 0.2 cos 5.72 t ; this describes the motion, where t 1s
in seconds, y 1s in meters and the angle 5.72 t ts in radians.
b) The velocity at any time is

v(t):@:\/gylsin\@t.
dt Yo b4

Putting in numbers yields v(t) = 1.14 sin 5.72 t . The velocity at t=0.3s 1s now equal
v=1.13 m/s.
¢) The acceleration at any time 13

2
a(z‘):gﬁ~d x:-g—ylcos Et,
Vyo

i dr*y,
Putting in numbers yields a(t) =6.53 cos 5.7t .




Problem 1-4. a) A mass starts the simple harmonic motion at its maximum displacement

x=A and it 1s released without a push (v=0 at t=0).
b) In the second case, the mass was at t=0 at x=0 and it was struck, giving

it an initial velocity v, towards increasing values of x.
For both cases determine the constants a and & in the general solution
X =acosot+bsinot.

Solution: a) Applying the initial conditions, x=A and v==0 at t=0 we can write
x=acos0+bsn0=A

and v:%:~awsin0+bwcosotba) .

Thus a=A and bo=0, so b=0, and the motion is a pure cosine curve X = A cos ot .
b) Applying new initial conditions x=0 and v =y, att=0 we write
x=acos0+bsm0=0

v=—awsin 0+bwcosO=v, .

From the first equality it is evident that a=0 and the second equality yields & = Yo This
@

L . v, . ‘ ‘ v
motion is a pure sine curve x =—-sin @¢ with the amplitude equal —
@ )

1.3 Energy in the Simple Harmonic Oscillator

For a simple harmonic oscillator the restoring force 1s given by F = -k x = Thus the
potential energy function 1s given by

1
Uz-JFdx:E-kxz,

where the constant of integration is set equal to zero so U=0 at x=0.
Then the total energy equals

E =L +lkx2,
2 2

where v 1s the velocity of the mass m when it is a distance x from the equilibrium
position. If there is no friction the total energy must remains constant. Since at the
extreme points, x = A and x = -A | the velocity v=0, so all the energy is potential energy
and we have

E:lkAz‘
2

Thus, the total energy of a particle executing simple harmonic motion is
proportional to the square of the amplitude of the motion.
At the equilibrium point, x=0, all the energy 1s kinetic

1
E=—my}
2

max ?

where v__ represents the maximum velocity during the motion. At intermediate pomts
the energy E 1s part kinetic and part potential Since the total energy E is conserved we
have




' 1
Eelom e Lpar - —mvl
| 2 2 2 2 |
From this equation it can be obtained a useful equation for the velocity v as a function of
X:

2
of, SINce V,, = A\/@ , V=V =
m
Again it is seen that v is a maximum at x=0, and 1s zero at x = +A4.
The potential energy U 1s plotted
Ut in Fig. The horizontal line
represents the total energy E. The

: distance between this line and the
ke U curve represents the kinetic
' energy, and the motion 1S
: 1 restricted to x values between -A
': PE and +A .

- A 0 A X

Problem 1-5. A spring stretches y, =0 15 m when m=03 kg mass 1s hung from it
The spring is then stretched an additional y, =0.1 m from its equilibrium point and
released.
Determine: a) the total energy

b) the kinetic and potential energies as a function of time

¢) the velocity when the mass is y = 0.05 m from equilibrium

d) the kinetic and potential energies at half amplitude

Solution' a) First we need to know the force constant k and the amplitude of the
oscillation:

F mg
Yo N
Since the spring is stretched 0.1 m from equilibrium and is given no initial speed, the
amplitude of the oscillation equals A=y, =0.1m.

Thus the total energy E 1s

k =196 N/m.

E:%kAZ:SD.leO‘zJ,

b) To calculate the kinetic and potential energies as a function of time we need to know
the displacement x as a function of time and the velocity as a function of time as well.
The motion begins at a point of maximum displacement downward. If we take x positive
upward, then x =- A at t=0 and so the phase angle equals ¢=m.

Hence

=- A cos ot




where the angular frequency @ 1s given by

a):\/z:SK.OSS’1
m

Putting in numbers yields the displacement x as a function of time
x=-01cos808t,

where t is in seconds and x 15 in meters.

The velocity as a function of time 1s given by

v:-@—:O,ESOSSmS.OSt.
dt

So, the kinetic energy as a function of time 1s

KE = %mv2 =98x107*sin”8.08¢
and the potential energy as a function of time 1s

PE = %kxz =9.8x107 cos’ 8.0817.

¢) To calculate the velocity when the mass 1s y=0.05 m from equilibrium we first need
to know its maximum velocity v,
Vo =0 A=0808m/s,

and the velocity at the place of y=0.05m from equilibrium 1s given by

2

— 2 —07Tmls.
A

d) Aty = A/2=0.05m the potential and kinetic energies have values:
P]:?—zloc2 =3 5% 10 J

and the kinetic energy can be calculated as the total energy minus the potential energy:
KE=E~-PE=73x10"J.

Problem 1-6. Solve géheraﬂy the previous problem and express all the results in terms of
the given quantities m, y, and y, .

k:*F_:I’E> A:yI’ gp:ﬂ;)a): E:\/.iz

_lkAZ :lﬁg_yll
2 2y,

b) cosa)z‘——ylcos\/gt
0

Solution’ a)

11




PE—lkyz _1mg g

2 8 ¥,
EE=E-PE=2T8
Yo

Problem 1-7. Discuss the forces acting on the
following questions:

simple pendulum and answer the

a) Is the simple pendulum really undergoing the simple harmonic motion?
b) Is the restoring force proportional to its displacement?
¢) State the approximate formula for its period.

Solution: A simple pendulum is an idealised body consisting of a pomt mass, suspended
by a light inextensible cord. When pulled of its equilibrium and released, the pendulum
swings in a vertical plane under the influence of gravity. The motion 1s periodic and
oscillatory.

Z l 4

% mgcos ¢

restoring force acting on m tending to return it to
restoring force 13
F =-mg sino .

The figure shows a pendulum of
length /, particle mass m, making an
angle ¢ with the vertical. The forces
acting on m are mg, the
gravitational force, and T, the
tension in the cord. Let's resolve the
force mg nto a radial component of
magnitude mg cose , and a
tangential component of magnitude
mg sing . The radial component
supplies the necessary centripetal
acceleration to keep the particle
moving on a circular arc. The
tangential component is  the
the equilibrium position. Hence, the




i

Notice that the restoring force is not proportional to the angular displacement ¢ but to
sino instead. The resulting motion cannot be, therefore, simple harmonic. However, if
the angle ¢ is small, sing is very nearly equal to ¢ in radians. The displacement along the
arcis x =10 , and for small angles this is nearly straight-line motion.
Hence, assuming
sInQ =0,

we obtain

F:-m@@:—%gn
and for small displacements, therefore, the restoring force is proportional to the
displacement and is oppositely directed. The constant mg/l represents the force constant
k and thus the period of a simple pendulum when its amplitude is small 1

m ]
T—szﬁzzn LA

k g
It is seen that the period is independent of the mass of the suspended particle.

Problem 1-8. Derive the formula for the period of the physical pendulum for small
angular displacements.

Solution: Any rigid body mounted so that it can swing in a vertical plane about some axis
passing through it is called a physical pendulum. In the figure a body of irregular shape
is pivoted about a horizontal friction less axis
through O and displaced from the equilibrium
position by an angle ¢. The distance from pivot to
centre of gravity is A, the moment of mertia of the
body about an axis through the pivot is I and the
mass of the body is m. The restoring torque for an
angular displacement © 1s
T = - mgh sinQ.

This is due to the tangential component of the force
of gravity. Since T 1s proportional to sin@, rather
than ¢, the condition for simple harmonic motion
does not hold here. For small angular displacements,

however, the relation sme = = 18 a good
approximation, so that for small amplitudes,
T = - mgho.
Newton's second law for rotational motion states that
2
r=J ¢ ,
dt’

where I is the moment of inertia of the body calculated about an axis through point 0,
and the second derivative represents the angular acceleration.
Thus the equation of motion for the physical pendulum has the form

2
d(o+mgh¢:0

dt* I



It is clear that for small angular displacement a physical pendulum undergoes the simple
harmonic motion and the term mgh/I replaces k/m.
Hence, the angular frequency of a physical pendulum oscillating with small amplitude 1s

Y- mgh
4

T:%Z:Z?Z' L
@ \ mgh

(At larger amphtude the physical pendulum still has a harmonic motion, but not a simple

harmonic one.)
From the last formula the physical pendulum can be used for determinations of g.

and the period

Problem 1-9. As a special case of the physical pendulum consider a point mass 7
suspended at the end of a weightless string of length | and calculate the period of 1ts

SWIngs.

Solution: Putting / =ml” , h =] in the expression for the physical pendulum yields
R

| 1
TZZEV@:ZTIVQ .

Problem 1-10. Find the length of a simple pendulum whose period is equal to that of a
particular physical pendulum.

Solution’ Equating the period of a simple pendulum to that of a physical pendulum, we

obtain
2 LA 27 L&
Vg \ mgh

or [=—
mg

Hence, as far as its period of oscillation is concerned, the mass of a physical pendulum
may be considered to be concentrated at a pomnt whose distance from the pivot 1s
| = I/mh. This point is called the centre of oscillation of the physical pendulum. It
depends on the location of the pivot. If C represents the centre o f oscillation when 0 1s
the pivot point, then when C is the pivot point, 0 1s the centre of oscillation and the
period 1s the same.

Problem 1-11. An easy way to measure the moment of inertia of an object about any
axis is to measure the period of its oscillation about that axis. Suppose a nonuniform
1-kg stick be balanced at a point 42 cm from one end. If it is pivoted about that end it
oscillates at a frequency of 2.5 Hz Find its moment of inertia about this end and its
moment of inertia about an axis perpendicular to the stick through its centre of mass.




Solution From the formula for the period of the physical pendulum we have for I
T*mgh

ar
Putting T=1/f=045s,h=042m,m=1kg yields /= 0.27kgm” .
To answer the second question we use the parallel-axis theorem. The centre of mass 15
where the stick balanced, 42 cm from the end, so

I _=1-mh*>=0.0%gm"

Notice that since an object does not oscillate about its centre of mass, the parallel-axis
theorem provides a convenient method to determune /.

J =

Problem 1-12. A straight uniform rod of length 1 =1 m and mass m = 160 kg hangs
from a pivot at one end.
Determine: a) its period for small amplitude oscillations,

b) the length of a simple pendulum that will have the same period,

Solution: a) The moment of inertia of a this rod about an axis through one end 1s

1 A A . o
I= gml 2 Since the centre of mass is at its centre, h = /2 and then the period is

I=2x . =L % 2—1:1.645.
mgh 3g

b) To have the same period, a simple pendulum must have a length L that can be

calculated from the equality
27 \/Z =27 /—]~
g  \mgh
1

or JLie—ro

mh
which, for our rod pivoted at one end , 1s
1.
—ml
Ltl—T~ ~[=067m
m_._
2

Problem 1-13. A disk is pivoted at its rim (the point P in Fig.). Find its period for small
oscillations and the length of the equivalent simple
pendulum. Where is the centre of oscillation of the
1 disk? What is the period if the disk is pivoted at a
7y point midway between the rim and its centre?

Solution: The moment of inertia of a disk about an
axis through its centre is 2mr’ , where r is the

radius and m 1s the mass of the disk.
Hence, the moment of inertia about the pivot at the
rim 18

15




1 : 3
[=—mr’ +mr’? ==—mr’
2 2

The period then 1s (h = 1)

T=2rx W*I——:Zﬂ\/zi .
mgh 2g

Notice that the period is independent of the mass of the disk.
Simple pendulum having the same period will have a length calculated from the equality

27[\/z:2ﬂ »i—
g \ mgh

I Zimr® 3
or [=—=2—=—1 ,
mh mr 2 :
or three-fourths the diameter of the disk. The centre of oscillation of the disk pivoted at
P is, therefore, at 0, a distance 27 below the point of support.
If the disk will be pivoted at a point O midway between the nm and the centre its moment
of mertia changes in value /=3mr” and h=r/2. '

The period of its oscillations now 1s

- S
T=2x ——{-—:27r M _on A
mgh mg % V2g

just as before. This illustrates again a general property of the centre of oscillation.

Problem 1-14. The period of a disk of radius 102 cm executing small oscillations
about a pivot at its rim was measured to be 0.784 s Find the value of g, the acceleration

due to gravity at that location.
[g=982ms7]

Problem 1-15. Examine the combination of two simple harmonic motions equal n
frequencies along two perpendicular directions, say the x and y axes.
Deal with the cases: a) equal phases,

b) the phases differ by n/2 and the amplitudes are equal,

c) the phases differ by 7/2 but the amplitudes are not equal.

Solution: a) The x-motion 1s described by
x=A_cos(wt+o)
then the y-motion can be described by

y:Aycos(a)rJrga):;—ilx,

X

X which is the equation of a straight line whose slope 1s
(4,/4,)

Ay Hence, the resultant motion will be a straight line in

the xy plane, of slope (Ay / Ax) . In Fig. we have the




case of 4,/ 4, =2 Both the x- and y- displacements reach a maximum at the same time
and reach a minimum at the same time.

b) Here the phases differ by 7/2 and the two motions can be
described

A x:Acos(coH(p)

y
0 X 7T ;
; \-J y:Acos(a)t+go~E):As1n(a)z‘+¢)

and we have

x?+y? = A cos (w1 + @)+ A*sin*(wt + 9) = A
which is the equation of a circle of radius A in the xy plane (shown n Fig ).

>

¢) Here the phases again differ by 7/2 but the amplitudes are not equal. The two motions
are now described

x=A cos(wt+¢)

y
A y:Aycos(a)thrgp—g):Ay sin(a)t+¢))
.AX//—-—>AX

X
—_—= cos(a)t + ¢)
A,
- Ay x
Y sin(wt+ )
A}’
and thus we obtain
2 2
%—Jr—)—%: L,
AL Ay

which 1s the equation of the ellipse with major and minor axes equal to 24, and 24,
(shown in Fig)).

Problem 1-16. A piece of rubber i1s 145 cm long when a weight of 18 N hangs from 1t
and 1s 168 ¢cm long when a weight of 22 5 N hangs from it. What 1s the force constant of
this piece of rubber?

[19.6 N/m ]

Problem 1-17. What is the equation describing the motion of a spring that 1s stretched
20 cm from equilibrium and then released, and whose period 1s 0.75 s? What will be 1ts
displacement after 1.8 s?

x =20¢o0s 2 . —lécm
: 0.75

17




Problem 1-18. A block of mass m is supported by two identical parallel vertical springs,
each with force constant k. What will be the frequeney of vibration?
27\m

Problem 1-19. The position of a SHM as a function of time is given by
x =3 .8 cos( 7nt/4 + /6 )
where t 1s 1n second and x 1 meters.
Find (a) the period and frequency, (b) the position and velocity at t = 0, and (c) the
velocity and acceleration att =2 s.
[7/8s, 8/7Hz, 33 m, -104m/s, 18.1 m/s, 574 m/s" ]

Problem 1-20. A mass m 1s placed on the end of a freely hanging spring. The mass then

falls 30 cm before 1t stops and begins to rise. What 1s the frequency of the motion?
[13Hz]

Problem 1-21. At what displacement of a SHM 1s the energy half kinetic and half
potential? What fraction of the total energy of a SHM is kinetic and what fraction
potential when the displacement is half the amplitude?

{irA\E‘, PE~-L . KEi}
4 4

Problem 1-22. If one vibration has 10 times the energy of a second one of equal
frequency, but the first's force constant k is twice as large as the second's, how do their

amplitudes compare”?
[4,= 4,35 ]

Problem 1-23. At t = 0, a 650-g mass at rest on the end of a horizontal spring (k = 84
N/m ) is struck by a hammer which gives it an initial speed of 1.26 m/s.
Determine (a) the period and frequency of the motion, (b) the amplitude, (c) the
maximum acceleration, (d) the position as a function of time .

[055s;, 1.81Hz, 0.111m; 143 m/s*, x=0111cos(11.41t)]

Problem 1-24. What is the period of a simple pendulum on Mars, where the acceleration
of gravity is about 0.37 that on Earth, if the pendulum has a period of 0.8 s on Earth?
[0495]




Problem 1-25. What is the period of a simple pendulum 60 cm long (a) on the earth,

and (b) when it 1s in a freely falling elevator?
[ 165, infinite ]

Problem 1-26. Derive a formula for the maximum speed of a simple pendulum bob m

terms of g, the length L, and the angle of swing ¢ B
[v = ,/2gL(1~cosgo)]

Problem 1-27. The pendulum of an accurate clock oscillates with an amplitude of +12°.
If, due to a faulty mechanism, the amplitude is instead maintained at +1°, what will be the
clock error per day? Does it gain or lose?

[ clock will gain 3 min 54 s ]

Problem 1-28. A 4-kg block extends a spring 16 cm from its unstretched position. The
block is removed and a 0.5-kg body is hung from the same spring. If the spring is then
stretched and released, what 1s its period of oscillation?

[0285]

Problem 1-29. A particle executes linear harmonic motion about the point x =0 = At
t=0 it has displacement x = 0.37 cm and zero velocity. The frequency of the motion 15
025 Hz.

Determine (a) the period, (b) the angular frequency, (c) the amplitude, (d) the
displacement at time t, (e) the velocity at time t, (f) the maximum speed, (g) the
maximum acceleration, (h) the displacement at t =3 s, and (1) the speed at t =3 s.
Answer: [ 4's; w/2 rad/s; 037 cm;, 037 cos(nt/2) in centimeters, -0.58 sin(mt/2) 1n
centimeters per second; 0.58 cm/s; 091 cm/s*, zero, 058 cm/s |

Problem 1-30. A body oscillates with simple harmonic motion according to the equation
x = 6 cos(3nt + 7/3)

where x 1s in meters, t 1s in seconds, and the numbers in the parentheses are in radians.

Determine the displacement, the velocity, the acceleration, and the phase at the time

t =2 s. Find also the frequency and the period of the motion.

Answer: [ 3 m; -49 m/s, -270 m/s”; 20rad;, 1.5Hz, 067 s ]

Problem 1-31. A simple pendulum of length 1 m makes 100 complete oscillations in
204 s at a certain location. What is the acceleration due to gravity at this point?
[0.49 m/s* ]

19




1.4 Damped Harmonic Motion

The amplitude of any real oscillation gradually decreases to zero as a result of
friction. The motion is said to be damped and is called damped harmonic motion. The
damping is generally due to the resistance of air and to internal friction within the
oscillatory system. The energy that is thus dissipated to thermal energy 1s reflected m a
decreased amplitude of oscillation. In most cases of interest the frictional force is
proportional to the velocity of the motion but directed opposite to it.

The equation of motion of the damped harmonic oscillator is given by the
second law of motion, F =ma , in which F 1s the sum of the restoring force -kx and the
damping force -Bv, where B 1s a constant and m 1s the mass of the system.

Thus, we obtain

kx -Bv=ma
or
2
mdx+Bix—+kx:O
dt” dt
or
d’x Bdx k

. k .
Putting g =28 and =" yields the final form of the equation of motion for
m m

damped oscillations
2

2 f+25 & x=0

dt dt
where the new constant & is called the damping constant ([5 ] = s‘l)‘ The second
constant @ represents the well-known angular frequency of non damped oscillations
when damping force 1s equal zero.
If B and thus & are not too large, the solution of this differential equation (given
without proof) 1s

x=Ae cos{w't+¢),

w':2ﬂf':m .

The period 7, of damped oscillations 1s
27z 2n
]; me— ———
' (02 o 52

where

In Fig. the displacement x as a function of the
time t for the damped harmonic motion with
small damping is plotted. The motion is oscillatory with ever decreasing amplitude. The
amplitude (---) is seen to start with value A and decay exponentially to zero as £ — .

The solution can be interpreted as follows. First, the frequency o' is less and the period
is longer than for non damped motion. (In most practical cases of light damping,
however, @' differs only slightly from @). If no friction were present, would equal zero
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and ' would equal the angular frequency @ of non damped motion. Second, the
amplitude of the motion gradually decreases to zero. The constant 3 1s a measure of how
quickly the oscillations decrease toward zero. The time £, =1/6 1s the time taken for
the oscillations to drop to 1/e of the original amplitude; 7, 1s called the mean lifetime
of the oscillations. Note that the larger & is, the more quickly the oscillations die away.
The ratio of two successive maxima of displacements on the same side from the
equilibrium 1s
-4t 1

= 5 :edTl.—_b
e %h

e
e~60—n)

where the constant b is called the damping. The natural logarithm of the damping b 1s
then called the logarithmic decrement of damping A

A=Inb=d1 .
Note that A is dimensionless.

If the force of friction is great enough, § becomes too large. The solution x is no
longer a valid solution of the equation of motion if & is so large that & )w” since then
@' would become imaginary. In this case the system does

| ot oscillate at all but returns directly to its equilibrum
position when released from its initial displacement. Three
common cases of damped systems are shown in Fig
Curve C represents the situation when the damping 1s so

large (52 >>a)2) it takes a long time to reach equilibrium

- the system is over damped. Curve A represents an
under damped situation (52 (a)z) in which the system

_ makes several swings before coming to rest and
corresponds to the solution for x(t). Curve B represents critical damping (52 = a)z). In

this case equilibrium 1s reached in the shortest time.

Problem 1-32. The initial displacement of damped oscillations is U, =3c¢m (for t = 0).
At time 7, =10 s the maximum of displacement equals U, = 1cm. Calculate time £, for
which the maximum of displacement will be I/, = 0.3 cm.

Solution: the maximum of displacement at time 7, is described by

U =U,e?’
From here we can calculate the damping constant
& = iln Yy
Z‘1 UI
To calculate time 7, we express
U,=U,e"
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and from here

Problem 1-33. Calculate the time in which the energy of damped oscillations with
frequency = 600 Hz will decrease 10° times, if the logarithmic decrement A = 0. 0008

Solution' at time 7, the amplitude 1s 4, ~ ¢%" and the energy 1s £, ~ A ;

at time £, =, + 1, (¢_ 1s the time to be calculated) the amplitude will be
A, ~e’ and theenergy E,~ 4, ;

We know that
B o n (where =10°)
2
Hence,
E A
— ———i- bl ¢
E, 4
or
A e—étl
A; T ) = e’
Thus
e&t _ \/;
and

~ln\/;

x "

o

The unknown damping constant can be calculated from the logarithmic decrement
A =6 T, where T, is the period of damped oscillations.

So that
A 2
O=—=Af .
% /
Now
t = LA
A f,

Problem 1-34. Calculate the logarithmic decrement of the simple pendulum whose
length I = 0.8 m if its mitial amplitude «, = 5° and after 5 minutes it will be @ =0.5" .




Solution' the logarithmic decrement of the damped oscillatory system 1s defined
bo=d 4
where & is the damping constant and 7 1s the period of the damped oscillations.

For maxima of displacements
5t

a(t) = o, &
where @, is the initial displacement.
From here
1. &
S=-ln—= .
t a

The period of the damped pendulum equals
2r 2

2
7=l
@4 w5
where @ = %TE is the angular frequency of the non damped pendulum, when

T=2x E is 1ts period.
Vg

So that, @ = E and for the logarithmic decrement we obtain

92
A=6T= ?szﬂ_—iizzfilm_
yo'-o" g llnﬁ)‘
L !«

Problem 1-35. The maximum of displacement of damped oscillations decreases three
times in time of one period 7, . Determine the magnitude of the ratio 7,/T , when T 1s the

period of non damped oscillations.

Solution' Let ,, 7, be the angular frequency and the period of damped oscillations,
respectively. Let @, T be the angular frequency and the period of non damped
oscillations, respectively.
There is the relation between @, and ©

wl= 0’5’ [¢Y)
where & 1s the damping constant.
The ratio of two successive maxima of displacements represents the damping:

Hence,
In A
P
1
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We substitute this & for (1) to obtain
a7 47 (n3)
T 7
and from here we express the ratio

f )
—];»: 1+(1—n—3) =101 .

T 2
The result tells us that the period of these damped oscillations i of 1.5 % longer than
that of non damped oscillations.

1.5 Forced Oscillations; Resonance

When the body is subject to an oscillatory external force the oscillations that result
are called forced oscillations. These forced oscillations have the frequency of the
external force and not the natural frequency of the body.

In a forced oscillations, the amplitude and hence the energy transferred to the oscillatory
system is found to depend on the difference between the forced and the natural
frequency as well as on the amount of damping.
The equation of motion of a forced oscillator follows from the second law of motion.
In addition to the restoring force -kx and the damping force -Bv, we have also the
applied oscillating external force. Let this external force be given by

£, =Fycos@t
where F, is the maximum value of the external force and o = 2nf 1s its angular
frequency.
Then the equation of motion 1s

et = —kx ~B§£+FO cosmt
dt
or
dZ
dt
The solution of this equation 18

;Jr-Bgferkx =Fcoswt
dt

m

X = Aﬂsin(a)t—Hﬁ)
where the amplitude 4, equals

By i

m\ﬂwzf 0?) + B m

ik
when ®,=,/— s the natural undamped angular frequency of the system and m 1s 1ts
m

mass. Note that the system oscillates with the frequency o of the driving force and that
the motion is undamped harmonic motion. Actually, the general solution takes another
term for the damped motion. But this second term approaches zero in time,

The amplitude of forced harmonic motion, 4,, depends strongly on the difference
between the applied frequency © and the natural frequency @, . A plot of 4, as a

function of the applied frequency ® , is shown in Fig. for three specific values of
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damping. Curve A represents light
damping, Curve B fairly heavy damping,
and Curve C overdamped motion.
The amplitude can become large when,
w~awo, , the driving frequency @ 1s
near the natural frequency, as long as
the damping 1s not too large. When the
damping 1s small, the increase iIn
amplitude near w ~w, 1s very large
(and often dramatic). This s known as
resonance and the value of © at which
resonance occurs 1s called the resonant
frequency. The smaller the damping in
a given system the closer 1s the resonant
frequency to the natural undamped
frequency @ , . Frequently the damping
1s small enough so that the resonant
0 : By ‘ frequency can be taken to equal the
- @ natural undamped frequency @, with
small error. If B = 0, resonance occurs
v at w=w, and the amplitude 4,
becomes mfinite. In such a case, energy is being continuously transferred into the system
and none 1s dissipated. For real system, B 1s never precisely zero, and the amplitude 1s
finite. The peak of the amplitude does not occur precisely at = w , , although it 1s quite
close to w , unless the damping 1s very large. If the damping 1s large, there s little or no
peak as seen in curve C.

Problem 1-36. Derive the precise formula for the forced angular frequency (the resonant
frequency) for which the amplitude 4, of forced oscillations reaches its maximum value

for non zero damping.

[a)m: \/a)g ~B*/2m* = \/a)é ~252J

Problem 1-37. Prove that the amplitude of the velocity for forced oscillations is given by
the product of the amplitude A, and the forced angular frequency @ . Then prove that
the extreme of this amplitude occurs when the forced angular frequency equals the
natural frequency regardless the value of the damping.
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